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Abstract. The Laws of Classical Thermodynamics and the fundamental prin-
ciples of Statistical Mechanics are reviewed with an emphasis on their logical
structure. We discuss the universality of equilibrium fluctuations (Brownian
Motion) and describe some contemporary results such as Jarzynski and Crooks
Non-Equilibrium Work Identities. A brief review of Shannon Entropy reveals
the formal analogy between Thermodynamics and Information Theory: these
two sciences must be coupled in order to understand and to exorcise Maxwell’s
demon.

1 Introduction

In his treatise on Thermodynamics [1], R. Kubo mentions a small book by the Czech
chemist F. Wald (1861-1930), entitled The Mistress of the World and her Shadow, a
metaphor alluding to Energy and Entropy. Quoting Robert Emden, Kubo notes that
‘in the huge manufactory of natural processes, the principle of entropy occupies the
position of manager, for it dictates the manner and method of the whole business,
whilst the principle of energy merely does the bookkeeping, balancing credits and
debits [2].’ Yet, while Energy seems to be familiar to all of us, Entropy remains a
mysterious concept, frequently (mis)used in everyday language as a substitute for
chaos, noise, disorder, disorganization or even... business inefficiency [3].

Equilibrium statistical mechanics tells us that entropy relates the microscopic
realm to the macroscopic world, by enumerating how many micro-configurations of
a system are compatible with our sense-data and the measurements performed at
our scale. It allows us to quantify the loss of information by coarse-graining from the
microscale to the macroscale. To be fair, Entropy should be considered as a source
of surprise rather than confusion.

The aim of this article is to recount the subtle ballet of Entropy between Physics
and Information Theory, choreographed by the puckish demon imagined by Maxwell
in 1867, as an incarnation ‘of that force that always wills the evil and always pro-
duces the good’. Learning about entropy will entail us to review the Principles of
thermodynamics and their underlying statistical basis, with never ending thermal
fluctuations, exemplified by the Brownian motion. By modeling nonequilibrium dy-
namics, we shall relate entropy to stochastic trajectories. This will lead us to the
Fluctuation Theorem and to the Nonequilibrium Work Identities. The stage will be
set to face information theory, to confront the demon and the various attempts to
exorcise him (or her).
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2 Thermodynamics: A Brief Review

Thermodynamics describes macroscopic properties of matter (solid, fluid, radia-
tion...) in terms of a small number of macroscopic observables (such as pressure,
volume, mass, temperature) assuming that these properties do not vary with time.
The Laws of Thermodynamics allow us to derive some general relations amongst
these properties irrespective of the structure of matter at the atomic scale. Indeed,
the Two Principles were established during the XIXth century before the dawn of
atomic physics [4, 5, 6, 7, 8, 9].

Thermodynamics can be viewed as the science of energy conversions. In order
to establish a correct balance, two guiding principles must be respected:
(i) all forms of energy involved must be identified correctly and accounted for;
(ii) different forms of energy are not equivalent. Some energy conversions are free of
cost while others come with a fee and need compensation (according to Clausius).

Thermodynamics is one of the most elegant branches of Physics, but it is also
notoriously difficult. This feature has been perfectly emphasized by Onsager (see
Fig. 1): ‘As in other kinds of bookkeeping, the trickiest questions that arise in the
application of thermodynamics deal with the proper identification and classification
of the entries; the arithmetics is straightforward’ (Onsager, 1967).

Figure 1: Lars Onsager (1903-1976) obtained the Nobel Prize in Chemistry 1968 for ‘the discovery
of the reciprocal relations bearing his name, which are fundamental for the thermodynamics of
irreversible processes’.

2.1 The two Principles of Thermodynamics

We shall start by reviewing some elementary conversion problems. The simplest
example is the conversion of Mechanical Energy into different forms (kinetic and
potential); a ball that falls from a height h reaches the ground with velocity v2 = 2gh
where g ∼ 9.8m/s2 is the gravity acceleration. This is the content of the celebrated
experiments that Galileo is said to have performed from Pisa’s Leaning Tower (see
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Fig. 2). In this elementary calculation, the friction of air has been neglected: this
conversion of potential energy into kinetic energy occurs without a fee (conservation
of the total mechanical energy). The free fall of a body can also be used to perform
a work W (e.g. by attaching it to a pulley), the value of which is given by

W = Einitial − Efinal = −∆E = mgh , (1)

where E represents the potential energy.

v  = 2 g h 2

1
2

h

h = 20m      v = 20 m/s = 72 km/h

mgh =     mv2

Figure 2: The legendary experiment of Galileo in Pisa and its schematic representation.

Using such elementary energy balance arguments one can easily estimate the
order of magnitude of the maximal height that a pole-vaulter can jump on the earth
(use the fact that that the highest speed a human being can reach is roughly 10m/s).

The above processes are assumed to be free of dissipation and can be described
in purely mechanical terms. In particular, they are perfectly reversible with time:
for example, the motion of a pendulum clock allows us to measure time by slicing
it into periods of constant duration but it does not tell us what the direction of
time is: a movie displaying the oscillations of a dissipation-less pendulum can be
run backwards in time without anybody noticing it.

In reality, some dissipation is always present: a ball bouncing on the ground
looses energy at each shock and stops after a few bounces. Of course, energy as a
whole is conserved because heat is evolved. This is the content of the First Principle
of Thermodynamics: Heat must be taken into account when doing energy book-
keeping. The work of James Joule established that Work and Heat are two ways
of exchanging energy between a system and its environment. This lead to the First
Principle of Thermodynamics:

∆E = ∂W + ∂Q. (2)

The energy E in this equation is now the total internal energy of the system.
In layman’s words, the First Principle states that: The energy of the universe

is constant.
Exercise (proposed by Jean-Marc Victor): Energy balance problems can some-

times be rather subtle. Consider two perfectly identical spheres at the same tem-
perature and made of the same material (Fig. 3). One sphere lies on the ground
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Figure 3: The two spheres puzzle.

whereas the other is hanging, attached by a rigid thread. The same quantity of heat
Q is given to each sphere. Which sphere will be hotter? (we suppose that there is
no heat transfer from a sphere to its environment, i.e., ground, air, thread...).

In presence of dissipation, time-reversibility at macroscopic scale is lost. Pro-
jecting the movie of a ball bouncing on the ground backwards in time would display
an impossible process: the ball would appear to bounce spontaneously higher and
higher by absorbing heat from the ground. Such a process satisfies the first law of
thermodynamics but would clearly never happen in reality.

In short, some processes are possible whereas others are not. This can be a very
difficult task to detect the hidden flaw in some highly involved mechanisms. How
can one discriminate between possible and impossible processes? The solution to this
problem is provided by the Second Law of Thermodynamics, elaborated by Carnot
in 1824 (see Fig. 4), Clausius (1850) and Kelvin (1851). Two classical formulations
of the second principle are [4]:

• Clausius formulation: No process is possible whose sole result is the transfer of
heat from a cooler body to a hotter body.

• Kelvin-Planck formulation: No process is possible whose sole result is the ab-
sorption of heat from a reservoir and the conversion of that heat into work.

The Clausius and the Kelvin-Planck formulations present two elementary, uni-
versal, archetypical forbidden processes. These two statements can be shown to be
equivalent and they cover all possible cases; they provide the answer to the problem
of deciding whether a given process is possible or not: by suitable couplings and
mappings, an impossible process can always be transformed into a ‘machine’ that
violates Kelvin-Planck’s or Clausius’ statement. At this stage, thermodynamics ac-
quires a logical beauty akin to that of classical geometry. This elegant structure is
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Figure 4: Sadi Carnot (1796-1832).

perfectly demonstrated in the classical books of Fermi or Pippard [5, 6] or in the
recent textbook of Don Lemons, Mere Thermodynamics [7].

The Second Principle was put on a quantitative basis by Clausius, who intro-
duced, in 1851, the entropy state function which measures the degree of irreversibil-
ity of a process. This is expressed by Clausius’ Inequality, which becomes an equality
if and only if the process is reversible

S2 − S1 ≥
∫

1→2
∂Q
T
. (3)

The Clausius or Kelvin-Planck statements of the second law can be reformulated
in a more formal way: any process that would result in a decrease of the entropy of
an isolated system is impossible.

The inequality (3), when applied to the universe considered as a whole, implies
that the entropy of the universe increases. This sentence can be considered as a
popular (albeit informal) statement of the Second Principle.

Although Energy is a familiar concept that plays a prominent role in many
processes [5, 10, 11], one should never forget Entropy that drives secretly many
phenomena observed in daily life, for example the melting of ice. Ultimately, ther-
modynamic effects are due to the interplay of Energy and Entropy: A thermal system
seeks to minimize its energy while maximizing its entropy at the same time. The
subtle balance between these two state functions is encoded in the Free Energy F
that plays a fundamental role in statistical physics:

F = E − TS . (4)

The interpretation of Free Energy as maximum available work is classical. Con-
sider a system that evolves from a state A to a state B, both at the temperature T
equal to that of the environment (see Fig. 5). Suppose that the system exchanges
heat only with its environment. Then, because of irreversibility, the Work, Wuseful,
that one can extract from this system is at most equal to to the decrease of free
energy:

Wuseful ≤Finitial − Ffinal = −∆F. (5)
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The equality is valid when the process is reversible. Comparing with equation (1)
which is purely mechanical (with no heat transfer) we observe that the role of poten-
tial energy is now played by the thermodynamic potential F , and that the equality
is replaced by an inequality because of dissipative effects.
Remark: One often considers the work W we perform on the system, which is the
opposite of the work available from the system. The inequality (5) then becomes

W ≥ FB − FA = ∆F. (6)

In other words, in order to increase the free energy of an isothermal system by an
amount ∆F one has to perform an amount of work at least equal to ∆F . In general,
because of irreversibility, the work performed W must be strictly greater than the
free-energy variation.

We briefly recall the derivation of the Maximal Work Inequality, which requires
the two Principles of Thermodynamics:

• The First Principle states that ∆E = W + Q (Recall that Wuseful is equal to
−W )

• We now use the Second Principle:
∫
A→B

∂Q
T
≤ SB − SA = ∆S. From which we

conclude that Q ≤ T∆S.

We conclude that

∆F = ∆E − T∆S = W +Q− T∆S ≤ W.

It is useful to define the dissipated work, Wdiss = W −∆F , which from the
above equation is given by

Wdiss

T
= ∆S +

(
−Q
T

)
≡ ∆S(universe) ≥ 0.

The interpretation of this identity is clear: the dissipated work Wdiss/T represents the
total entropy production, in the universe, by the process. This entropy production
must be non-negative.

A
V    

B
V    

T T

Figure 5: An illustration of the Maximum Work relation on a simple piston-gas system.

A last refinement of the Maximal Work Theorem that will become clear in the
sequel is the following. Thermodynamics considers macroscopic observables which
assume well-defined values. However, Statistical Mechanics predicts that observables
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are subject to thermal fluctuations around their average, thermodynamic, values. In
particular, the work W should also be considered to be a random variable. Thus,
one should be aware that, strictly speaking, thermodynamic identities refer to mean
values. In full rigor, the Maximal Work Theorem should be written as

〈Wuseful〉 ≤Finitial − Ffinal = −∆F (7)

and we emphasize again that the equality can only occur for a reversible process.
In a later section of this review, we shall explain that there exists an exact identity,
known as Jarzynski’s relation, which is valid both for reversible and irreversible
processes. The classic inequality (7) is a consequence of Jarzynski’s relation.

2.2 Molecular theory of heat and the framework of Statistical Mechanics

The works of Maxwell, Boltzmann and Gibbs (fig. 6) have led to a statistical interpre-
tation of entropy and to the foundations of Statistical Mechanics which encompasses
classical thermodynamics and provides its microscopic basis.

Figure 6: Three Fathers of Statistical Mechanics: James Clerk Maxwell (1831-1879), Josiah Willard
Gibbs (1839-1903) and Ludwig Eduard Boltzmann (1844-1906).

The phase space of a macroscopic system that contains typically 1023 molecules
is huge. Our senses and our measurement devices are sensitive only to a few global
and averaged properties. In fact, at the microscopic scale, a system, even at equi-
librium, evolves continuously from one microstate to another but most of the time
these different microstates are perceived by us as being the same macroscopic state.
We have indeed access only to extremely coarse-grained sense-data and a tremen-
dous number of microstates are compatible with this data. Thus, coarse-graining
from the microscale to the macroscale implies a huge loss of information: entropy
quantifies this fact.

More precisely, consider an isolated system of macroscopic volume V with total
energy E. We suppose that all microscopic states of the system having energy E are
equiprobable: this assumption, known as the ‘microcanonical probability ensemble’
is a foundation-stone of statistical mechanics. (This can be proved rigorously for
systems that display sufficiently strong ergodicity). The thermodynamic entropy S
of a microcanonical system enumerates the total number of such microscopic states,
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Ω(E, V ) and the Boltzmann formula (fig. 7) states that

S = kB log Ω with kB ' 1.3810−23 . (8)

The determination of Entropy is fundamentally a counting, a combinatorial,
problem.

We shall illustrate this fact by analyzing a simplistic toy model of a perfect gas
enclosed in a box of volume V . Consider a gas consisting of N classical distinguish-
able molecules: a microscopic state is specified by knowing all the positions and the
velocities of all molecules. The entropy S of the gas will depend on the volume V and
the total energy E of the gas. We simplify the discussion further and analyze only the
positional configurations (forgetting about velocities - in fact, impulsions ultimately
factor out). Let us discretize the box by supposing that the position of an individual
molecule inside the box is known up to a precision ∆V � V . The total number of

micro-configurations is then given by Ω =
(
V

∆V

)N
. Using Boltzmann’s formula, we

deduce that, at constant energy, the entropy is given by S = NkB log V + const.
The unwanted constant will drop out if we consider entropy variations. Let us sup-
pose that we double the volume of the box by performing an isothermal expansion
V → 2V . Because the temperature is constant, the internal energy of the gas is
constant and the variation of entropy, ∆S = S2 − S1, is due only to the volume
change. We have

S2 − S1 = NkB log 2. (9)

This equation can be understood by saying that each particle contributes to the
entropy increase by the amount kB log 2, which results from the doubling of the
available volume. Note that after doubling the volume, a particle can be in two
different regions (or ‘states’), namely the left part or the right part of the box with
equal probabilities 1/2.

We can emphasize the combinatorial content of the previous model by making
it even more abstract and removing all spurious references to gases, particles etc...
We consider an assembly consisting of N independent elements, that can occupy m
different states that we label i = 1, 2, . . . ,m. We assume that state i can be occupied
with probability pi. If N � 1, we shall have roughly n1 = Np1 objects in state 1,
n2 = Np2 objects in state 2 etc... The total number or configurations Ω is given by
the multinomial coefficient

Ω =
N !∏m
i=1 ni!

=
N !∏m

i=1(Npi)!
.

The corresponding entropy is evaluated by using Stirling’s formula and we obtain

S = kB log Ω ' −NkB
m∑
i=1

pi log pi. (10)

The contribution of each elementary constituent to the total entropy thus can be
evaluated as

S = −kB
∑m

i=1 pi log pi. (11)

Note that the volume doubling calculation above is retrieved by taking p1 = p2 =
1/2.
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This result has far reaching consequences in fundamental Physics. Suppose that
the states i = 1, 2, . . . ,m represent m different energy levels ε1, . . . , εm that can be
occupied by N non-interacting objects. Besides, consider that the average energy
Nε of the system is kept constant (for example by connecting it to a heat reservoir).
As above, we denote by ni = piN the average occupation of state i. We thus have
the following two constraints:

m∑
i=1

pi = 1, (12)

m∑
i=1

piεi = ε. (13)

Following Schrödinger [12], one imposes that the total entropy S of the ensemble,
given by the formula (10), must be maximal, as required by the Second Principle of
Thermodynamics (or by saying that the most probable configurations overwhelm-
ingly dominate over the others when N →∞). The logic is then reverted as follows:
What will be the assignment of the probabilities pi that maximizes S under the
constraints (12) and (13)? This problem is readily solved (for example by using
Lagrange multipliers) and one finds

pi =
1

Z
e−εi/kBT , (14)

where the constants Z and T are adjusted to satisfy the constraints. E. Schrödinger
then proves explicitly that T is identical to the physical concept of temperature and
that the Partition Function Z (Zustandsumme) is simply related to the thermody-
namic Free Energy (see equation (17) below).

A more standard path to study a system thermalized a given temperature T
(i.e. a system in contact with a huge thermal reservoir at temperature T ) is to apply
Boltzmann’s fundamental equation (8) to the total isolated entity consisting of the
system + reservoir and to eliminate (trace out) the degrees of freedom of the reservoir
[10]. One shows that the probability of observing a microscopic configuration C of
energy E(C) is given by the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kBT

Z
. (15)

The Partition Function Z which insures that all probabilities sum up to 1 (normal-
ization) is given by

Z =
∑
C

e−E(C)/kBT =
∑
E

Ω(E)e−E/kBT . (16)

The canonical law, which implies a probabilistic description of the microscopic struc-
ture of a thermal system is derived from Boltzmann’s formula (8) under very general
assumptions. The framework of statistical mechanics then is laid out by the follow-
ing relation, deduced from Eqs. (4, 8, 15) and (16) and which links the Free Energy
with the Partition Function:

F = −kBT log Z. (17)
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From this relation, the probabilistic expression of the entropy for a system at tem-
perature T is readily obtained as

S = −kB
∑
C

Peq(C) logPeq(C) , (18)

which is identical to the combinatorial expression (11).
The precise logical order under which Statistical Mechanics is presented depends

on the books and on the lecturer’s tastes. The standard point of view [10] or the
probabilistic/combinatorial approach of Schrödinger [12, 13, 14] are equally valid
but their underlying logic is different.

The important fact is that Statistical Mechanics provides us with a systematic
procedure to analyze systems at thermal equilibrium:

• Describe the microstates of the system and find a suitable microscopic Hamil-
tonian.

• Calculate Z and deduce the Free Energy F .

• Derive from F the thermodynamic properties of the system such as its phase
diagram.

Of course, applying this well-defined program to a given problem can be in-
credibly difficult. Nobody knows how to calculate Z for the three-dimensional Ising
model...

Figure 7: Ludwig Boltzmann (1844-1906). The celebrated formula for the entropy is inscribed on
Boltzmann’s grave in Vienna.

Before concluding this section, we recall the Sakur-Tetrode formula (1912) for
the entropy of a mono-atomic classical ideal gas, taking into account quantum in-
distinguishability and phase-space discreteness [4, 13]

S = kBN log

[
V

N

(
mkBT

2π~2

)]
+

5

2
kBN, (19)

where m is the mass of a gas particle and ~ is Planck’s constant. For one mole of
Helium at 300K, the total entropy is about 100J/K.
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2.3 Brownian Motion: Equilibrium is dynamical

Equilibrium is a dynamical concept: a system in thermal equilibrium keeps on evolv-
ing from one microstate to another even if it appears to our imperfect senses to re-
main in the same macrostate. Thermodynamics deals only with averaged values: it
can not account for microscopic fluctuations. Though these fluctuations are usually
very minute (of relative order of 10−11 for a system containing one mole of matter)
they can be detected either by using measuring devices which are becoming finer
and finer or by studying very small systems. Statistical Mechanics allows us to cal-
culate the probability distributions of observables (and not only their averages) and
perfectly describes the thermal fluctuations.

The paradigm for thermal fluctuations is Brownian Motion discovered by Robert
Brown who observed through a microscope, the perpetual, restless, giggling of a
pollen grain in water (fig. 8). This phenomenon is the signature, at our scale, of the
granular, discontinuous, structure of matter. It is the experimental footprint of the
existence of atoms.

0

X(t)

<X > = 2 D t
2

Figure 8: Robert Brown (1773-1858) and a sketch of Brownian motion.

The theory of Brownian Motion was elaborated by Albert Einstein, in 1905.
The Brownian particle (for example, a grain of pollen) is restlessly shaken by ran-
dom shocks with the molecules of water. Because of these shocks, the pollen grain
undergoes an erratic motion and diffuses with time around its original position: al-
though the average position of the Brownian particle does not change with time
(just because of isotropy of space) the quadratic average (i.e., the variance) of the
position grows linearly with time:

〈X2(t)〉 = 2Dt . (20)

For a spherical particle of radius a, immersed in a liquid of viscosity η at (absolute)
temperature T , the diffusion constant D is, given according to Einstein, by

D =
RT

6πηaN
, (21)

where N ' 6 1023 is the Avogadro number, and R ' 8.31 is the perfect gas constant.
This formula is extraordinary in the sense that it relates observables D, T , η and
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a, which are all macroscopic to the number N of atoms in a mole of matter. This
relation allowed Jean Perrin to weigh experimentally an atom of hydrogen (as he
himself stated in his book ‘The Atoms’); indeed 1/N is roughly equal to the mass of
one atom of hydrogen in grams. In his experiments, Perrin used small latex spheres
with a ∼ 0.1µm, immersed in water (η = 10−3kgm−1s−1) at temperature T = 300K.
The typical value of D is then 10−12m2/s, i.e., the Brownian particles diffuse about
one micrometer in one second. All these values, though not strictly macroscopic, were
observable with an optical microscope at the beginning of the twentieth century
and are much larger than the atomic scale. The theory of Brownian motion and
its experimental verification established beyond any doubt the existence of atoms,
considered previously to be a mere hypothesis.

Einstein’s formula (21) can be interpreted as the simplest manifestation of the
Fluctuation-Dissipation Relation: consider that the pollen grain of size a, immersed
in water, is subject to a small drag force fext (suppose for example that it is being
pulled by an external operator). Because of this force, the pollen acquires a velocity v,
and is subject to a frictional force −γv because of the viscosity η of the surrounding
water. The friction coefficient γ was calculated by Stokes at linear order in the
velocity and it is given by γ = 6πηa (assuming the pollen to be a perfect sphere).
Balancing the drag force with the frictional force, leads to the limiting speed:

v∞ = σfext with σ =
1

6πηa
. (22)

The susceptibility σ measures the linear response to the external drive fext. Using
this concept of susceptibility, Einstein’s relation can be rewritten as:

D = kBTσ, (23)

kB = R/N being Boltzmann’s constant. In other words, fluctuations at equilibrium,
quantified by D, are proportional to the susceptibility σ which quantifies the Linear
Response to a small external perturbation that drives the system out of equilibrium.
There are many good books and articles on Brownian motion and linear response.
Some useful references are [10, 15, 16, 17, 18, 19].

2.4 Universality of Brownian motion: Feynman’s Ratchet and Pawl

One reason why Brownian Motion was so troublesome to 19th century physicists
was (apart from the fact that they could not find a suitable explanation for it) that
the pollen grain was undergoing a kind of perpetual motion even while remaining
in contact with a single heat source (the water bath). Moreover, one could conceive
a Gedanken Experiment in which this perpetual motion could be coupled to a me-
chanical rectifier such as a wheel allowed to rotate only in one direction. Thus, when
the Brownian particle would move in one direction, say Eastwards, the wheel would
rotate whereas it would stay still if the particle moved Westwards (see Fig. 10).
This is in essence the celebrated Ratchet and Pawl model discussed by Feynman in
Chap. 46 of his Lectures on Physics, Volume 1 [18]. Feynman rediscovered a model
initially proposed by Smoluchowski (see Fig. 9). Thus, the second principle would
be in trouble because this rectified motion of the wheel could be used to extract
some work from a single heat source.
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Figure 9: Marian Smoluchowski (1872-1917) was a pioneer of statistical physics. Richard Phillips
Feynman (1918-1988) made many fundamental discoveries, including that ‘Physics isn’t the most
important thing. Love is.’

In order for the pollen grain to cause rotation of the wheel in the Gedanken
Experiment at a perceptible rate, this wheel must be very small. However, all bodies
are subject to thermal fluctuations which typically are inversely proportional to their
size. This universal character of thermal fluctuations leads to the resolution of the
paradox: the one-way wheel is also subject to intrinsic thermal fluctuations which
cause it to move in the forbidden direction. A precise calculation, see, e.g., [22], shows
that the two effects (the rotation of the wheel by the Brownian particle versus the
spontaneous motion in the forbidden direction) perfectly compensate each other and
no net rotation of the wheel occurs: ‘the second law is saved’.

Figure 10: A Smoluchowski-Feynman ratchet.

2.4.1 Application to Molecular Motors

The concept of rectification of thermal fluctuations will be useful in non-equilibrium
situations and will provide us a basic model for molecular motors in biological cells.

A significant part of the eucaryotic cellular traffic relies on ’motor’ proteins that
move in a deterministic way along filaments similar in function to railway tracks or
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freeways (kinesins and dyneins move along tubulin filaments; myosins move along
actin filaments). The filaments are periodic (of period ∼ 10nm) and have a fairly
rigid structure; they are also polar: a given motor always moves in the same direction.
These motors appear in a variety of biological contexts: muscular contraction, cell
division, cellular traffic, material transport along the axons of nerve cells...

Molecular Motors move by using the ratchet effect: they provide an example of
rectification of Brownian motion (for reviews see, e.g., [21, 23]). This rectification
process relies on an external energy source, provided by ATP hydrolysis, that enables
the motor to undergo transitions between different states and when these transitions
break the detailed balance, a directed motion sets in (see Fig. 11). In order to move
the motor consumes r ATP fuel molecules per unit time, which are hydrolyzed to
ADP + P:

ATP 
 ADP + P .

The relevant chemical potential is thus given by ∆µ = µATP − µADP − µP.

ADP + PATP

  

v

r

CARGO

Figure 11: Schematic representation of a molecular motor: by hydrolyzing ATP, the motor proceeds
along the polar filament and carries a ‘cargo’ molecule.

The principle of the motor is shown in figure 12 where the motor is represented
by a small particle that can move in a one-dimensional space. At the initial time
t = 0, the motor is trapped in one of the wells of a periodic asymmetric potential
of period a. Between time 0 and tf , the asymmetric potential is erased and the
particle diffuses freely and isotropically at temperature T . At time tf , the asymmetric
potential is re-impressed, the motor slides down in the nearest potential valley and,
because of damping, is trapped in one of the wells. The motor has maximal chance to
end up in the same well where it was at time t = 0. However, it has a small probability
to be trapped in the well located to the right and (because of the asymmetry of the
potential) an even smaller probability to end up in the left well. In other words,
because the potential is asymmetric, the motor has more chances to slide down
towards the right: this leads on average to a net total current.

In general, the motor is subject to an external force fext which tilts the poten-
tial. Besides, when ATP is in excess, the chemical potential ∆µ = µATP−µADP−µP

becomes positive. A basic problem is then to determine the velocity of the motor
v(fext,∆µ) (mechanical current) and the ATP consumption rate r(fext,∆µ) (chem-
ical current) as functions of the external mechanical and chemical loads [20, 21, 22,
23, 24].
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a b

t =0

0 < t < T

t =T

J

Figure 12: The principle of a Brownian ratchet: by inscribing and erasing periodically an asym-
metric potential, a directed motion of the particle is induced. In this example, the potential is a
saw-tooth function of period a = A + B. Since B > A, the slopes are different and the potential
is asymmetric. The relative sizes of the probabilities of ending in one of the wells are represented
by the sizes of the disks in the lowest picture. The right and left probabilities being different, this
leads on average to a net total current J .

3 Equilibrium and Non-Equilibrium Dynamics

3.1 Markovian dynamics

An efficient way to describe systems out of equilibrium is to use a probabilistic ap-
proach that goes back to Einstein’s 1905 paper and to Smoluchowski work at the
same period. The idea is to write an evolution equation for the probability Pt(C) for
the system to be in the microstate (or configuration) C at time t. In order to achieve
such a description, one has to:
1. Enumerate the Microstates {C1, C2 . . .} of the system. These microstates can form
a discrete or a continuous set depending on the problem studied.
2. Specify the transition rates between two configurations. An important and com-
mon assumption is that these rates do not depend on the previous history of the
system but only on the configuration C at time t and on the target configuration C ′ at
time t+dt: this is the Markovian hypothesis which amounts to neglecting short time
correlations. Thus, one must specify which transitions C → C ′ are allowed between
times t and t+ dt and give their probability M(C ′, C)dt.

The evolution of the system can thus be viewed as a path on the configurations
network and the time evolution of Pt(C) is obtained by writing a balance equation in
this network between the incoming flux and the outgoing flux at each configuration
as shown in Fig. 13.



16 K. Mallick Séminaire Poincaré

C

C’

M(C,C’)

Figure 13: A network representation of the transition rates in a Markovian dynamics.

d
dt
Pt(C) =

∑
C′ 6=CM(C, C ′)Pt(C ′)−

{∑
C′ 6=CM(C ′, C)

}
Pt(C). (24)

This rather simple looking equation is nothing but the Master equation for non-
equilibrium statistical mechanics which plays, in this field, a role analogous to New-
ton’s equation in mechanics or Schrödinger’s equation in Quantum Mechanics. The
Master (or Markov) equation (24) is a linear equation in the probability vector Pt
whose components are given by {Pt(C)}. It is more convenient to write it in a matrix
form

dPt
dt

= M.Pt , (25)

where the Markov Operator M has matrix elements given by M(C, C ′) for C 6= C ′
and its diagonal terms are defined as

M(C, C) = −
∑
C′ 6=C

M(C ′, C) . (26)

The Markov Operator M fully encodes the microscopic dynamics of the system in
this probabilistic approach which already implies a level of coarse-graining. Many
physical properties of non-equilibrium systems are obtained by investigating the
characteristics of M such as its symmetries or the various types it can assume etc...
Markov operators have the following basic properties:

(i) Non-diagonal terms are non-negative.
(ii) Diagonal terms are negative.
(iii) Equation (26) implies that the sum of the elements of M over any column

vanishes. This in turn implies the conservation of total probability, i.e.,
∑
C Pt(C) is

constant.
(iv) A vector P∞ in kernel of M is a stationary state, i.e.,

dP∞
dt

= 0 . (27)

Under rather general assumptions, it is possible to prove the Perron-Frobenius
Theorem (see, e.g., [16]) which ensures that: (i) the kernel of M is non-degenerate
and therefore the stationary state is unique; (ii) all other eigenvalues of M have
strictly negative real parts; the inverse of these real parts correspond to the intrinsic
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relaxation times of the system towards its stationary state (the imaginary parts
characterize the oscillations during relaxation).

Remark: We shall limit our discussion to the Markovian case. The analysis of non-
Markovian systems is an active field which requires specific techniques. It often
happens, however, that a non-Markovian problem can be embedded into a larger
Markovian system by taking into account supplementary degrees of freedom.

The archetypical model of Markovian dynamics is the the random walk on a
discrete lattice, which is used to explain diffusive behaviour (a classic reference is
[15]). We consider a random walker on a one-dimensional discrete lattice with spacing
a where the walker can jump from a site to its two neighbours with probability dt
between time t and t+ dt. The Master equation for the random walker is given by

dPt(na)

dt
= Pt((n+ 1)a) + Pt((n− 1)a)− 2Pt(na) , (28)

and the corresponding Markov Operator is nothing but the discrete Laplacian:

M =



. . . . . . . . . . . .
0 1 −2 1 0
0 0 1 −2 1 0

0 0 1 −2 1
. . .

. . . . . . . . . . . . . . .

 .

3.2 Connection to Thermodynamics

In the probabilistic approach of non-equilibrium dynamics that we have described
above, we made no mention of equilibrium statistical mechanics. Up till now, the
discussion has been purely mathematical. However, this description has to be related
to thermal physics. The connection with thermodynamics is obtained by imposing
the condition that the stationary state of the Markovian dynamics P∞ (Eq. (27))
be given by the Boltzmann-Gibbs canonical formula (15) which describes a system
in thermal equilibrium:

P∞(C) = Peq(C) =
e−E(C)/kBT

Z
. (29)

This matching condition with thermodynamics imposes a global constraint on the
rates in the Markov operator:

∑
C′ 6=C

M(C, C ′)e−E(C′)/kBT = e−E(C)/kBT

{∑
C′ 6=C

M(C ′, C)

}
. (30)

This condition implies that the system described by the stochastic dynamics reaches
ultimately a state of thermodynamic equilibrium. For systems far from equilibrium
with a non-thermodynamic stationary state, this relation does not hold.
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3.3 Time-Reversal Invariance and Detailed Balance

The master equation (24) can be rewritten as follows:

d

dt
Pt(C) =

∑
C′
{M(C, C ′)Pt(C ′)−M(C ′, C)Pt(C)} =

∑
C′
Jt(C, C ′) , (31)

where Jt(C, C ′) represents the net local current flowing between the configurations
C ′ and C at time t;

Jt(C, C ′) = M(C, C ′)Pt(C ′)−M(C ′, C)Pt(C) . (32)

The local current encodes a balance of in going and out going currents between C ′
and C that is represented graphically in figure 14.

The local current is anti-symmetric with respect to the configurations:

Jt(C, C ′) = −Jt(C ′, C) . (33)

Besides, total probability conservation leads to∑
C,C′

Jt(C, C ′) = 0 . (34)

This relation is valid for any time t.

C’ C

M(C’,C) P(C)

M(C,C’) P(C’)

t

t

Figure 14: The local current between two configurations in a Markovian system.

When t → ∞, the system reaches a steady-state with a stationary probability
density. This implies that the total current flowing to C compensates exactly the
total current flowing from C: ∑

C′
J∞(C, C ′) = 0 . (35)

This global balance condition is nothing but a reformulation of the stationarity
condition (27).

Taking into account the fact that the microscopic dynamics of the system which
is represented by an effective Markovian model is Hamiltonian and that Hamiltonian
dynamics is in general time-reversible, Onsager derived the following, much stronger,
constraint:

M(C, C ′)Peq(C ′) = M(C ′, C)Peq(C). (36)
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This remarkable relation, known as Detailed Balance, is a consequence of the time-
reversal symmetry of the microscopic dynamics of the system. Detailed balance
implies that the net local current Jt(C, C ′) between two configurations C and C ′
vanishes at thermodynamic equilibrium. This very strong condition implies of course
the vanishing of the global currents (Eq. (35)). The detailed balance condition is
a fundamental dynamic property of equilibrium systems that goes beyond the laws
of classical thermodynamics. (Magnetic fields and overall rotation effects have been
excluded from our discussion for sake of simplicity. A modified version of detailed
balance allows to take into account these effects [16].)

There is an elegant way to express detailed balance as a Hermiticity property
of the Markov operator M . Indeed, detailed balance (36) can be rewritten as

Peq(C)−1/2M(C, C ′)Peq(C ′)1/2 = Peq(C ′)−1/2M(C ′, C)Peq(C)1/2 . (37)

Introducing now the diagonal matrix

Q =

 . . .

Peq(C)1/2

. . .

 , (38)

we observe that detailed balance implies that the operator W = Q−1MQ is Hermi-
tian:

W =W†. (39)

A system in thermodynamic equilibrium satisfies detailed balance. Conversely,
if the steady state of a system breaks the detailed balance condition then this steady
state is necessarily a Non-Equilibrium Stationary State (NESS). Hence, from a tech-
nical point of view, violating detailed balance ensures that the system is out of equi-
librium. Moreover, the mathematical description of systems far from equilibrium
typically involves Non-Hermitian evolution operators.

3.4 Physical Interpretation of Detailed Balance

We have said above that detailed balance was derived by Onsager as a consequence
of the time-reversibility of the underlying Hamiltonian dynamics. Here, we shall
prove the converse of this assertion: the equilibrium state of a system which satisfies
the detailed balance relation (36) is necessarily invariant by time-reversal.

We first recall two properties of any Markovian dynamics which will be useful
in the following:
1. The probability of remaining in C during a time interval τ is given by:

lim
dt→0

(1 +M(C, C)dt)
τ
dt = eM(C,C)τ . (40)

2. The probability of going from C to C ′ during dt is: M(C ′, C)dt.
Let us study a system in its equilibrium state. As we have already emphasized,

macroscopic equilibrium is in fact a dynamical state in which the system continu-
ously evolves between microscopic configurations. The frequency with which a given
configuration is visited is proportional to its stationary probability. We consider a
trajectory C(t) of the system between time t = 0 and a final observation time T
(see figure 15). We suppose that at t = 0 the system is in configuration C0, that
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it jumps from C0 to C1 at time t1 > 0 and remains in C1 till time t2; at t2 > t1, it
jumps from C1 to C2 and remains in C2 till t3 etc... More generally, the system jumps
from Ck to Ck+1 at time tk+1, for k = 1, . . . , n. The final jump from configuration
Cn−1 to Cn occurs at tn and the system remains in Cn till the final time T . What is
the probability Pr{C(t)} of observing the trajectory C(t)? Using recursively the two
properties recalled above we obtain:

Pr{C(t)} = eM(Cn,Cn)(T−tn) M(Cn, Cn−1)dtn eM(Cn−1,Cn−1)(tn−tn−1) . . .

eM(C2,C2)(t3−t2) M(C2, C1)dt2 eM(C1,C1)(t2−t1) M(C1, C0)dt1 eM(C0,C0)t1Peq(C0) (41)

C
n

C
2

C
0

C
1

t    
1 2

t    
n

t    

TRAJECTORY  C(t)  

0 T

Figure 15: A typical trajectory with discrete jumps in a Markovian dynamics.

We now calculate the probability of observing the time-reversed trajectory
Ĉ(t) = C(T − t) (see figure 16). The system starts at t = 0 in configuration Cn
and remains in that configuration till the time T − tn at which it jumps into Cn−1.
The next jump from Cn−1 to Cn−2 occurs at date T − tn−1. More generally, the sys-
tem jumps from Ck to Ck−1 at time T − tk, for k = n, n − 1, . . . , 1. At date T − t1,
the system reaches the configuration C0 and remains in it till the final time T . The
probability of this trajectory is given by:

Pr{Ĉ(t)} = eM(C0,C0)t1 M(C0, C1)dt1 eM(C1,C1)(t2−t1)

. . . eM(Cn−1,Cn−1)(tn−tn−1) M(Cn−1, Cn)dtn eM(Cn,Cn)(T−tn) Peq(Cn). (42)

The ratio of the probability of observing a given trajectory (41) to the proba-
bility of the time-reversed trajectory (42) is thus given by

Pr{C(t)}
Pr{Ĉ(t)}

=
M(Cn, Cn−1)M(Cn−1, Cn−2) . . .M(C1, C0)Peq(C0)

M(C0, C1)M(C1, C2) . . . M(Cn−1, Cn)Peq(Cn)
. (43)

If, in the numerator of this expression, we use recursively the detailed balance con-
dition (36)

M(Ck+1, Ck)Peq(Ck) = Peq(Ck+1)M(Ck, Ck+1) for k = 0, 1 . . . n− 1 ,

we find that
Pr{C(t)}
Pr{Ĉ(t)}

= 1 . (44)
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t    −T
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T−t    
n

TIME−REVERSED TRAJECTORY  C(T−t)  

T0

Figure 16: The time-reversed trajectory of the trajectory drawn in Figure 15.

We have thus shown that detailed balance implies that the dynamics in the station-
ary state is time reversible.

3.5 Entropy Production in Markovian systems

By analogy with equation (18) which gives an expression of the Entropy in the
canonical ensemble of Statistical Mechanics, it is possible to define formally a time-
dependent ‘entropy’ function for any Markovian system [16]:

S(t) = −
∑
C

Pt(C) logPt(C) . (45)

Using the Markov equation (31) in terms of the local currents, the time derivative
of this function is given by

dS(t)

dt
= −

∑
C

dPt(C)
dt

(logPt(C) + 1) = −
∑
C,C′

Jt(C, C ′) logPt(C)

=
∑
C,C′

Jt(C, C ′) logPt(C ′) , (46)

where we have used the global conservation (34). The last equality is obtained by
using the antisymmetry of the local currents (33) and by exchanging the role of the
dummy variables C and C ′. The expression for the time derivative of S(t) can be
written in a more elegant manner by taking the half-sum of the last two equalities:

dS(t)

dt
=

1

2

∑
C,C′

Jt(C, C ′) log
Pt(C ′)
Pt(C)

. (47)



22 K. Mallick Séminaire Poincaré

Transforming this expression, we obtain

dS(t)

dt
=

1

2

∑
C,C′

Jt(C, C ′)
(

log
Pt(C ′)
Pt(C)

+ log
M(C, C ′)
M(C ′, C)

− log
M(C, C ′)
M(C ′, C)

)
=

1

2

∑
C,C′

Jt(C, C ′) log
M(C, C ′)Pt(C ′)
M(C ′, C)Pt(C)

− 1

2

∑
C,C′

Jt(C, C ′) log
M(C, C ′)
M(C ′, C)

≡ diS

dt
+
deS

dt
, (48)

where the first expression in the last equality is called the entropy production term,
also denoted by σi, and the second term the entropy flux. The entropy production
can be proved, using convexity relations, to be always positive, σi ≥ 0, whereas the
entropy flux can be positive or negative. At equilibrium, σi vanishes identically be-
cause of detailed balance (Eq. (36)). In the vicinity of equilibrium the linear response
theory can be used to show that σi decreases towards 0 when the system relaxes
to equilibrium. For a system in a non-equilibrium stationary state that does not
satisfy detailed balance, σi does not vanish but entropy production and entropy flux
compensate each other exactly.

4 The Gallavotti-Cohen Fluctuation Theorem for Markovian Thermodynamics

Systems in a non-equilibrium stationary state typically exhibit a non-vanishing
macroscopic current J (e.g., a current of particles, or a heat flux...). Therefore,
time-reversal and detailed balance are broken in the mathematical description of
the system. The stationary state, which is in the kernel of the Markov operator M ,
is in general not given by a Boltzmann-Gibbs law (which satisfies detailed balance).
In fact, there is no general rule at present which would allow us to calculate the
stationary state knowing the external constraints applied to the system. As opposed
to the case of thermal equilibrium, there is no general theory of non-equilibrium
statistical mechanics. Some general results on systems far from equilibrium have
however been found that now we review.

4.1 Generalised Detailed Balance

Violation of detailed balance is the source of macroscopic currents which maintain
the system far from equilibrium. This violation can be due to different factors: (i)
the existence of an external driving force that pushes the particles in a given direc-
tion; (ii) the presence of reservoirs of unequal chemical potential (or temperature)
that generates a current. The second case is particularly important to model the
interaction of a system with its environment and the fluxes that are induced by
this interaction. For a system connected to reservoirs there often exists a relation
which plays a role similar to that of detailed balance and implies some fundamental
properties of the stationary state. This relation is called generalised detailed bal-
ance. We shall discuss it in the case of a discrete Markovian system [28] which can
undergo an elementary transition between two configurations during the interval
(t, t + dt). We shall suppose that we are studying an observable Yt which varies by
y at each elementary transition. For each elementary transition, we can specify how
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Yt changes:

C → C ′ and Yt → Yt + y with probability My(C ′, C)dt . (49)

By time reversal, the transition occurs from C ′ → C. Assuming that y is odd (i.e.,
it changes its sign), we have Yt → Yt − y . Finally, we suppose that there exists
a constant γ0 such that transition rates satisfy the generalised detailed balance
condition:

M+y(C ′, C)Pstat(C) = M−y(C, C ′) eγ0y Pstat(C ′). (50)

For γ0 = 0, usual detailed balance is recovered. This relation holds, under general
assumptions, for a system in contact with reservoirs that drive it out of equilibrium
(in fact, it can be shown to be a consequence of usual detailed balance for the global
model obtained by taking into account the system plus the reservoirs).

4.2 Time Reversal and the Gallavotti-Cohen Symmetry

We now investigate the relation between generalised detailed balance and time re-
versal [28]. We have to modify the calculations done in equations (41, 42, 43 and
44) by taking into account all the factors of the type eγ0y that appear at each jump
in the ratio between the probabilities of forward and time-reversed trajectories.

Y=y + y + ... +y
1 2 n

n
t    

C

C

C
1

2

C
0

n

Y=0
Y=y1

TRAJECTORY  C(t)  

Y=y  +  y
1 2

t    t    0
1 2

T

Figure 17: A trajectory in a Markovian system taking into account the variation of the observable
Yt at each jump.

Following the same steps as in section 3.4, we finally obtain

Pr{C(t)}
Pr{Ĉ(t)}

= eγ0Y {C(t)} , (51)

where Y {C(t)} = y1 + y2 + . . . yn is the cumulated value when the system follows
the trajectory C(t) between 0 and t (see fig. 17).

We now recall that Y is odd under time-reversal and therefore we have Y {Ĉ(t)}
= −Y {C(t)}. Summing equation (51) over all possible histories between times 0 and
t, and taking γ to be an arbitrary real number, we obtain∑

C(t)

e(γ−γ0)Y {C(t)}Pr{C(t)} =
∑
Ĉ(t)

e−γY {Ĉ(t)}Pr{Ĉ(t)} . (52)
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Because the relation between C(t) and Ĉ(t) is one-to-one, we deduce that〈
e(γ−γ0)Yt

〉
=
〈
e−γYt

〉
. (53)

Using the fact that
〈
eγYt
〉
' eE(γ)t, we obtain

E(γ − γ0) = E(−γ) . (54)

By Legendre transform of this equation, the Gallavotti-Cohen Fluctuation Theorem
for the Large Deviation Function Φ(j) (see Appendix A for a brief introduction to
large deviations) is derived [25, 26, 27, 28, 29]:

Φ(j) = Φ(−j)− γ0j . (55)

From the definition of the Large Deviations Function, the Fluctuation Theorem
implies that in the long-time limit

Pr
(
Yt
t

= j
)

Pr
(
Yt
t

= −j
)' eγ0j . (56)

This symmetry property of the Large Deviations Function is valid far from equi-
librium. This fact has been proved rigorously by various authors in many different
contexts (chaotic systems, Markovian dynamics, Langevin dynamics...).

Remark: In the original works (see e.g., [28] and references therein), the authors
studied the Large Deviations Function for the entropy production σ. Recalling that
the entropy flow is given by (48)

deS

dt
=

1

2

∑
C,C′

Jt(C, C ′) log
M(C ′, C)
M(C, C ′)

,

one defines an entropy transfer for each jump as

y = log
M(C ′, C)
M(C, C ′)

.

The increment of the entropy flow at each jump is thus given by y. A property
similar to generalised detailed balance is tautologically true for y:

My(C ′, C) = M−y(C, C ′)eγ0y with γ0 = 1 .

This relation implies a Fluctuation Theorem, given by

Φ(σ)− Φ(−σ) = −σ ,

where Φ(σ) is the large deviations function associated with entropy flow.

5 Jarzynski and Crooks Non-Equilibrium Identities

In this section, we describe a remarkable recent result in non-equilibrium statisti-
cal physics, which came as a surprise when it was first published by C. Jarzynski
(Fig. 18).
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In the section about classical thermodynamics, we have recalled, (see Eq. (6)),
that the work performed on a system in contact with a heat reservoir at temperature
T satisfies the relation

〈W 〉 ≥ FB − FA = ∆F , (57)

where FA is the free energy of the initial state and FB that of the final state. We point
out that in classical thermodynamics the work performed really means an average
over many experiments (e.g., an operator pulling a piston enclosing a perfect gas
from volume VA to VB, see figure 5). To emphasize this fact we have rewritten here
Equation (6) with the notation 〈W 〉 instead of simply W .

Figure 18: Christopher Jarzynski. His first paper on the celebrated Work Identity appeared in
Physical Review Letters in 1997 [30].

Two decades ago, Christopher Jarzynski found that this classical inequality,
well-known since the 19th century, can be deduced from an underlying remarkable
identity valid for non-equilibrium systems. In the beginning, this identity was proved
only for Hamiltonian systems, but Jarzynski (and others) have been extending its
validity to more and more cases (such as Markovian dynamics or Langevin systems)
[31, 32] and have verified it on exactly solvable models (see for example [33, 34, 35]
and references therein). Experimental results [36, 37, 38] have also confirmed the
Jarzynski relation which is now firmly established and is considered to be one of the
few exact results in non-equilibrium statistical mechanics.

Jarzynski’s Identity states that〈
e
− W
kBT

〉
= e

− ∆F
kBT . (58)

The average in this equation is taken over a non-equilibrium ensemble of individual
trajectories of finite duration tf .

The precise set up of Jarzynski’s identity is as follows. The system has been
prepared in a canonical equilibrium state A at temperature T and is in this state for
−∞ ≤ t ≤ 0 At time t = 0, the state is modified by an external operator according
to a well-defined protocol λ(t) that lasts for a finite period of time 0 ≤ t ≤ tf (see
Fig. 19).

• At t = 0, For t ≤ 0, λ(0) = λA and the system is in equilibrium in the state A.
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• Between 0 and tf , the operator acts on the system by changing a control pa-
rameter λ(t) according to a fixed well-defined protocol which does not have to
be quasi-static and which drives the system far from equilibrium.

• At tf , the operator stops to act and the control parameter is fixed to a value
λ(t) = λ(tf ) = λB for t ≥ tf . We emphasize that the system is not at equilibrium
at time tf .

During the whole process, the system remains in contact with a heat-bath at
temperature T . After an infinite time, it will reach the thermal equilibrium state B
at temperature T . We emphasize that the protocol λ(t) is not assumed to be ‘slow’.

Jarzynski’s Identity connects data related to a non-equilibrium process (the
exponential work average on the left hand side of the identity) with thermodynamics
(the free energy on the right hand side).

BV    
AV    

t = t 
f

λ(t)

T T

t = 0

λ

λ

λ

λ

0 t t
f

A

B

(t)

Figure 19: Set-up of Jarzynski’s formula for the case of a gas in a cylinder. Here λ(t) corresponds
to the volume: the operator moves the piston according to a well-defined protocol and stops at
time tf when the volume has reached VB .

Remarks:
1. From convexity (Jensen’s inequality), we have〈

e
− W
kBT

〉
≥ e

− 〈W 〉
kBT .

Hence, Jarzynski’s Work Theorem yields the classical inequality for the Maximum
Available Work.

2. However, in order to have an equality, there must be individual trajectories
that do not satisfy the classical inequality (57) i.e., there must be some realizations
for which

W < ∆F i.e. Wuseful > −∆F .

Such special occurrences are called ‘Transient Violations of the Second Principle’. It
must be emphasized that the Second Principle is not violated because the Second
Principle concerns averages and states that the average of the performed work is
greater than the free energy difference, which remains true. The Second Principle
does not say anything about individual behaviour. However, in thermodynamics,
we are so used to the fact that individual measurements usually reflect the typical
average behaviour that we forget the fact that these two quantities can be different.
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The ‘transient violations’ of the Second Principle can be quantified thanks to
an identity due to G. Crooks [39, 40, 41] which is even more precise than Jarzynski’s
relation.

Figure 20: Graphical representation of Crooks’ relation.

Let λF(t) be a protocol of duration tf that drives the system from VA to VB and
let λR(t) = λF(tf − t) be the time reversed protocol. It is then possible to measure
the work done during the Forward process and the work done during the Reversed
process. These quantities are both random variables with probability distributions
PF and PR, respectively. The following identity is satisfied by these probability
distributions (Crooks, 1999):

PF (W )

PR (−W )
= e

W−∆F
kBT . (59)

Note the similitude between this identity and the Fluctuation Theorem in the form
given in equation (56). In fact, the proof of Eq. (59) that we now sketch follows
similar lines [34]. The main difference with the analysis of Section 4.2 is that the
Markov matrix depends on time through the protocol λ(t). In order to calculate
the ratio between forward and backward trajectories, we need a local balance con-
dition between the rates. We shall assume that each transition at a given time (and
therefore for a given value of λ) satisfies a detailed balance condition:

Mλ(C, C ′)
Mλ(C ′, C)

= e
−Eλ(C)−Eλ(C′)

kBT ,

where Eλ(C) is the energy of configuration C for a fixed value of the parameter λ.
Calculating, as in Eq. (43), the ratio of the probability of a trajectory to that of the
time-reversed trajectory, we obtain, using the local detailed balance condition,

Pr{C(t)}
Pr{Ĉ(t)}

=
Peq,λ0(C0)

Peq,λn(Cn)
e
− 1
kBT

∑n
i=1(Eλi (Ci)−Eλi (Ci−1))

, (60)

where, following Crooks [39], the total heat transfered is defined as

Q =
n∑
i=1

[Eλi(Ci)− Eλi(Ci−1)].
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Besides, we have
Peq,λ0(C0)

Peq,λn(Cn)
= e

− ∆F
kBT

+ ∆E
kBT ,

where the variation of energy between the final and the initial configurations is
∆E = Eλn(Cn)−Eλ0(C0). From the First Principle ∆E = Q+W , we conclude that
Eq. (60) reduces to

Pr{C(t)}
Pr{Ĉ(t)}

= e
W−∆F
kBT , (61)

where W represents the work done along the forward trajectory C(t). Summing as
in over all trajectories that correspond to the same amount of work and using the
fact that W is odd under time reversal, Crook’s relation (59) is derived.

We now discuss some consequences of equation (59). Note that Crooks’ equation
implies Jarzynski’s relation is a direct consequence:〈

e
− W
kBT

〉
=

∫
e
− W
kBT PF (W ) dW = e

−∆F
kBT

∫
PR (−W ) dW = e

−∆F
kBT ,

where, to derive the last equality we have used the fact that PR is a normalized
probability distribution.

We can also calculate the order of magnitude of the probability of a transient
violation of amplitude ζ > 0:

ProbF (W < ∆F − ζ) =

∫ ∆F−ζ

−∞
PF (W ) dW =

∫ ∆F−ζ

−∞
PR (−W ) e

W−∆F
kBT dW

=

∫ 0

−∞
PR (ζ −∆F − v) e

v
kBT e

− ζ
kBT dv ≤ e

− ζ
kBT . (62)

To derive the last inequality, we have used the fact that e
v

kBT ≤ 1 for v ≤ 0 and
also that

∫ 0

−∞ PRdv ≤ 1. The probability of a violation of amplitude ζ > 0 is
exponentially small with ζ, but again such violations are necessary to ensure the
validity of Crooks’ and Jarzynski’s relations. We observe that for a transient violation
to have non-vanishing probability, ζ must be of the order of kBT . On the other hand,
∆F ∼ NkBT , where N is the number of degrees of freedom in the system, which
usually are of the order of the Avogadro number. Therefore, transient violations are
one part in 1023 for macroscopic systems: this is totally unobservable... One has to
work with very small systems, such as biophysical objects, to have the chance to
observe anything.

Jarzynski and Crooks’ Identities allow us to determine Equilibrium Free Energy
differences by doing Non-Equilibrium experiments. Many experimental results have
been obtained using single-molecule manipulations [36, 37, 38]. The idea behind
these experiments is shown in figure 20, which represents graphically Crooks’ rela-
tion (59). The forward work distribution and the distribution of minus the reversed
work cross each other at ∆F . These distributions can be measured and plotted
using non-equilibrium experimental conditions. This provides a method for deter-
mining Free Energy variations, which characterize equilibrium states, through non-
equilibrium data (see Fig. 20).
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6 Information Theory

Since the pioneering work of C. Shannon, Information Theory has become a major
field of the Modern Age [42]. There are many books to guide the reader in the funda-
mentals of this subject, from the classic monograph [43] of Shannon and Weaver (Fig
21) to very recent lectures notes of E. Witten [44], focused on quantum-information.
A selection of well-known references is [45, 46, 47, 48, 49, 50, 51, 52, 53]. A book
that I found particularly enthusiasming is An introduction to Information Theory.
Symbols, Signals and Noise by J.R. Pierce, a colleague and friend of Shannon, who
was himself a polymath.

Figure 21: Claude Shannon (1916-2001), Father of the Information Age.

Because the goal of the present chapter is to focus on the interplay between
Thermodynamics and Information Theory, we shall just briefly mention some basic
facts useful to our aim. A detailed introduction to Information Theory will be found
in the contribution of Olivier Rioul in this volume.

• Let us play a little game. Suppose I have 4 objects A, B, C and D. I choose
of them (with the same probability 1/4) and I hide it. You have to determine
which one I have selected by asking me binary questions (to which I can only
answer by yes/no). What is the minimal number Qmin of questions you need
to ask?

Answer: Qmin = 2. Devise an optimal strategy and convince yourself that had
I started with 2N objects, you would need to ask Qmin = N questions.

• Let’s make the problem harder: I still have 4 objects A, B, C and D, but I
select them with unequal probabilities: A with probability 1/2, B with 1/4, C
or D with 1/8. What is the minimal number of binary questions that you need
to ask me on average? Can you devise a strategy? Answer: 〈Qmin〉 = 7/4.

• More generally, I have m objects Ai that I select with probability pi. Is there a
lower bound to the average number of binary questions 〈Qmin〉? Can one devise
an optimal a strategy?



30 K. Mallick Séminaire Poincaré

• I have two coins: a fair well-balanced coin with a head and a tail, and a fake
coin with two heads. I take randomly one of these coins and throw it twice.
I record the number of heads that occurred: what information can I deduce
about the chosen coin?

• Suppose we want to transmit a message using an alphabet made of m letters,
a1, . . . , am, where the letter ai appears with frequency pi (think about a natural
language, English or French). Each letter is coded by a binary string and we
assume that the transmission channel is perfect (noiseless). Can we devise a
method to make the code words as short as possible?

Hint: Recall the Morse code, where the most frequent letter E, was represented
by a dot •

• Is it possible to transmit information through a noisy channel at a finite rate
(we loosely define the rate by the ratio of the length of the message transmitted
by the operator with the length of the original message) with an arbitrary small
probability of error?

Answer: YES: this is Shannon’s Fundamental Theorem of Information Theory
(1948). The lower bound of the transmission rate is given by a characteristic
property of the channel, called its capacity.

The solutions to these problems and to many other questions – that would
superficially appear to be totally unrelated to one another – involve a common key-
concept that Shannon discovered in the late 40’s. Shannon was able to quantify the
concept of uncertainty, indeterminacy, (lack of) information, or surprise carried by
a probability distribution p1, . . . , pm. He proved that uncertainty can be measured
in a quantitative manner. Moreover, the measure of information could be expressed
by a function H({p1, . . . , pm}) that, under very reasonable assumptions, is unique
(up to an overall normalization constant).

Shannon’s H function is given by

H({p1, . . . , pm}) = −
∑m

i=1 pi log2 pi , (63)

where log2 is the base 2 logarithm. H is expressed in bits.
As reported in a famous anecdote, the name of H was suggested to Shannon

by von Neumann, in Shannon’s words: My greatest concern was what to call it. I
thought of calling it ’information,’ but the word was overly used, so I decided to call
it ’uncertainty.’ When I discussed it with John von Neumann, he had a better idea.
Von Neumann told me, ’You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, no one really
knows what entropy really is, so in a debate you will always have the advantage.’

The Pandora box was open.

7 Thermodynamics and Information: The Maxwell Demon

The mathematical identicalness between Shannon’s H function (63) and the formula
for the Entropy in Statistical Physics (11) craves for a deep explanation. Jaynes [14]
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proposed an reformulation of Statistical Mechanics in which the Shannon Entropy
(63), re-expressed in the correct units, as taken as the definition of the Thermo-
dynamic Entropy. From this point of view, the formula (11) is not the result of a
combinatorial calculation à la Schrödinger but a starting point. The maximization
of the Shannon Entropy under various constraints allows one to retrieve the vari-
ous Gibbs ensembles and potentials of Statistical Mechanics. Furthermore, Jaynes
endeavoured to extend this approach by proposing a minimal entropy production
principle to analyze systems far from equilibrium [54]; however, this is only an ap-
proximate variational theory that can be considered as a linearization of more accu-
rate dynamical fluctuation principles [55, 56, 57]. Despite its elegance, Jaynes work
remained an academic curiosity. Statistical physicists and information theorists con-
tinued working on their specific problems without caring much about the other side’s
entropy.

However, there was one venerable problem where entropy and information had
to come face to face, a puzzle that dated from the very beginning of Statistical Me-
chanics, Maxwell’s demon (see Fig. 22). In his book Theory of Heat (1872), Maxwell
imagined a thought experiment in which an intelligent being (that Lord Kelvin later
christened as a ‘demon’) is able to violate the Second Law of thermodynamics by
sorting out fast and slow molecules of gas in a box initially at uniform temperature:

If we conceive of a being whose faculties are so sharpened that he can follow
every molecule in its course, such a being, whose attributes are as essentially finite
as our own, would be able to do what is impossible to us. For we have seen that
molecules in a vessel full of air at uniform temperature are moving with velocities by
no means uniform, though the mean velocity of any great number of them, arbitrarily
selected, is almost exactly uniform. Now let us suppose that such a vessel is divided
into two portions, A and B, by a division in which there is a small hole, and that
a being, who can see the individual molecules, opens and closes this hole, so as to
allow only the swifter molecules to pass from A to B, and only the slower molecules
to pass from B to A. He will thus, without expenditure of work, raise the temperature
of B and lower that of A, in contradiction to the second law of thermodynamics.

Figure 22: Maxwell’s demon analyzes the speed of every particle inside the container. By allowing
hot particles to enter the left-half of the box and keeping the cold particles to the right side,
the demon creates raises the temperature of one chamber in comparison of the other, without
expending any work, in contradiction with Clausius’ statement of the Second Principle.

For the last 150 years, scientists have struggled to exorcise Maxwell’s demon.
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The various attempts have shed light on the relations between Thermodynamics and
Information [58]. Although the debate is not fully settled yet, significant progress has
been achieved and, recently, Maxwell’s Demons have appeared in the laboratories,
to paraphrase the words of C. Bennett [59], one of the major players in this field.
Experimental aspects of the Maxwell’s Demon are reviewed in [60]. Here, we shall
outline some major theoretical steps in the understanding the demon puzzle.

If the demon is an autonomous and inert device, located within the gas, then
it is subject to thermal fluctuations and to Brownian motion. This demon could be
a trap that opens only in one direction (if it is hit by energetic molecules coming
from the right side of the box, for example). Such a mechanical or electrical rectifier
is nothing but a ratchet. As analyzed by Smoluchowski and Feynman (see section
2.4 and references therein) the universality of Brownian motion would prevent this
demon to operate at thermal equilibrium; silly demons are easy to exorcise.

An issue much more subtle and interesting arises if one supposes that the de-
mon is capable, somehow, to extract information from the gas from some physical
measurement, to record this information and act accordingly, and, finally, to reset
itself anew by discarding the acquired information once it has been used. In some
sense, the demon has to act in an ‘intelligent’ way, while remaining analyzable by
the Laws of Physics. In 1929, Leo Szilard wrote a classic paper, On the decrease of
Entropy in a Thermodynamic System by the Intervention of Intelligent Beings [61],
in which he proposes a simplified model for a intelligent Maxwell demon, that has
become the cornerstone of most of the subsequent studies (see Fig. 23).

A Szilard engine consists in a single gas particle in a box. The demon determines
which half of the box the particle is in (Step A) an inserts a partition (a movable
wall) inside the box (Step B). He also attaches a pulley and a mass to the move-able
wall. The particle bounces on the wall, pushes it away and performs work by raising
the mass (Step C). Because the box is connected to a heat reservoir, the expansion
of the gas is isothermal. When the wall reaches the left side of the box, it is removed
and the cycle is completed (Step D). All told, it seems that the single-particle gas
has extracted heat from the its environment to perform a total work of kBT log 2,
in apparent contradiction with the Second Principle.

Figure 23: Leo Szilard (1898-1964) discussing with a co-worker of his. On the right: a sketch of
Szilard’s engine.

Szilard’s engine works by acquiring a binary information (a bit) on the position
of the particle: left or right. Szilard understood that, to save Second Principle, the
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acquisition of this information must cost an entropy production, at least equal to
the ‘fundamental amount’ kB log 2. However, it was not clear in Szilard’s analysis
where this thermodynamic expense was located: in the measurement process, in the
recording of the information or in the erasing procedure that closes the cycle?

Figure 24: Léon Brillouin (1889-1969) associated Thermodynamics with Information Theory in his
attempt to exorcise Maxwell’s demon.

In 1951, Léon Brillouin (see fig. 24), and also, independently, Dennis Gabor,
analyzed thoroughly the measurement process by postulating that the demon uses
photons to acquire information, that are distributed according to Planck’s blackbody
law. Brillouin made a bold step: he added, in his entropy balance equations, a
contribution coming from the newly discovered Shannon Information entropy to the
usual Thermodynamic entropy. In other words, he argued that Information entropy
and Thermodynamic entropy were directly connected and should be treated on
equal footing. The conversion coefficient between information and physical entropy
is given by 1 bit = kB log 2, as found by Szilard. In Brillouin’s interpretation, the
Second Law has to be generalized in order to exorcise Maxwell’s demon. Thus, after
one cycle of the Szilard engine, the enclosed gas returns to its initial state while
the environment has lost a total heat ∆Q = −kbT log 2 (corresponding to the work
done by the engine) implying a decrease of the total entropy of the universe of
∆S = ∆Q/T = −kb log 2 in contradiction to the Second Principle. However, in step
B (see Fig. 23) an information ∆I has been gained on the position of the molecule.
The Shannon entropy corresponding to this information is given by ∆I = H =
−1

2
log2

1
2
− 1

2
log2

1
2

= 1bit. If all sources of entropy are duly recorded in the balance
sheet (with the correct conversion factor), we realize that

∆S + ∆I ≥ 0.

The entropy loss of the universe is accompanied by an information gain that com-
pensates it [45, 62, 63].

One important point that was not in Brillouin’s analysis was the physical origin
of the increase of entropy due to acquisition of information. Brillouin and Gabor at-
tributed it to the measurement process which used photons distributed according to
the blackbody radiation. It appeared however that reversible measurement schemes



34 K. Mallick Séminaire Poincaré

could be devised [67, 68] and that Brillouin’s exorcism was not sufficient to get rid
of the demon.

In 1961, Rolf Laudauer (see fig. 25) put forward a new Principle, relying on
the fact that ’Information is Physical’. Laudauer introduced the concept of logical
irreversibility [64, 65] and analyzed the process of erasure of information (a similar
idea was explored by O. Penrose in [66]). After completing one cycle, the demon
has to set back its memory to its original state before starting afresh. According
to Landauer, memory erasure is a source of heat and entropy that can never be
avoided. Landauer Principle states that the minimum possible amount of energy
required to erase one bit of information, known as the Landauer limit is given by
kB log 2. Landauer’s surmise can now be tested in the laboratory thanks to modern
techniques. Some seminal experiments have been carried out by S. Ciliberto and
coworkers at ENS Lyon [60]; their results and the contributions of other groups are
described in this volume.

Figure 25: Rolf Landauer (1927-1999) discovered the Principle that bears his name in 1961: ’In-
formation is Physical’. Charles Bennett (born in 1943) is one of the founding fathers of quantum
information theory.

The story of the demon is not complete yet. Stimulated by the discoveries of
Jarzynski and Crooks, the concepts of energy and entropy were applied to stochas-
tic dynamical systems, along the lines sketched in Section 5. This new Stochastic
Thermodynamics [71, 72, 73, 74] provides us with an efficient framework to for-
mulate classical measurement and feed-back processes and to generalize the Second
Principle in various settings [75, 76, 77, 78, 79, 80]. Besides, Landauer Principle can
derived by using calculations of path probabilities akin to the one presented above
to derive the Gallavotti-Cohen Theorem and the Crooks work relation [69, 70]. We
recommend the book of T. Sagawa, based on his PhD work, for a review of the most
recent discoveries [81].

8 Conclusion

The aim of this presentation is to arouse the curiosity of a non-specialist reader
to the various faces of entropy and to provide him or her with fairly up to date
entries to the literature. Only classical systems have been discussed here. The field
of Quantum Information is huge and, of course, Maxwell’s demon has a quantum
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twin [82] even more impish and ‘subtle’, but (hopefully) ‘not malicious’. Quantum
aspects are reviewed in details in other contributions to this volume: one may also
refer to [44] for a ‘Mini-Introduction’ and [83] for a classic reference. Last but not
least, let us mention an ultimate haunting spirit, straddling over a box that could
swallow our whole universe and our understanding: the solution of S. Hawking’s
Black hole Information Paradox would require a combination of quantum mechanics
and general relativity, that the reader is left to conceive [84].

8.1 APPENDIX A: Large deviations and cumulant generating functions

The concept of a large-deviation function is a useful and well-known tool in proba-
bility. It will be illustrated by the following example.

Let ε1, . . . , εN be N binary variables where εk = ±1 with probability 1/2 for
k = 1, . . . N . Suppose that the εk’s are independent and identically distributed. Their
sum is denoted by SN =

∑N
1 εk. We recall:

1. The Law of Large Numbers implies that SN/N → 0 (almost surely).

2. The Central Limit Theorem implies that SN/
√
N becomes a Gaussian variable of

unit variance.
We now quantify the probability that SN/N takes a non-typical value r, with

−1 < r < 1. One can show (using the Stirling formula) that in the large N limit

Pr

(
SN
N

= r

)
∼ e−N Φ(r) , (64)

where Φ(r) is given by

Φ(r) =
1 + r

2
log

(
1 + r

2

)
+

1− r
2

log

(
1− r

2

)
+ log 2 . (65)

The function Φ(r) is called a Large Deviations Function. Because of the Law of
Large Numbers, we know that Pr(SN

N
= 0) tends to 1 when N → ∞. The large

deviations function must therefore vanish at r = 0, which is indeed the case.
More generally, let Yt be a random variable (for example the total charge trans-

ported through a system) that depends on the time t. We assume that when t→∞,
we have Yt

t
→ J , i.e. Yt

t
converges towards its mean-value. The random variable Yt

satisfies a Large Deviations Principle if the following identity holds in the large time
limit:

P

(
Yt
t

= j

)
∼e−tΦ(j).

The function Φ(j) is a large deviations function of the rate of production of Yt. Note
that Φ(j) is positive and vanishes at j = J .

Another useful quantity to consider is the moment-generating function of Yt
defined as the average value

〈
eµYt

〉
. Expanding with respect of the parameter µ, we

get

log
〈
eµYt

〉
=
∑
k

µk

k!
〈〈Y k〉〉c ,

where 〈〈Y k〉〉c is the k-th cumulant of Yt. In many cases, one can show that in the
long time limit, we have〈

eµYt
〉
' eE(µ)t when t→∞.
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The function E(µ) is the cumulant generating function. The previous identity shows
that all cumulants of Yt grow linearly with time and their values are given by the
successive derivatives of E(µ)

It is readily shown that the large deviations function Φ(j) and the cumulant
generating function E(µ) are related by Legendre transform:

E(µ) = maxj (µj − Φ(j)).

Indeed, using saddle-point, we obtain〈
eγYt
〉

=

∫
Pr(Yt)e

γYtdYt = t

∫
Pr

(
Yt
t

= j

)
eγtjdj ∼

∫
eγtj−tΦ(j).

9 APPENDIX B: Proof of the Jarzynski Formula for Hamiltonian dynamics

We present here the original proof given by C. Jarzynski (PRL, 1997) [30]. Suppose
that, for t ≤ 0, the system is in a state A at thermal equilibrium with its environment
at temperature T . Between 0 ≤ t ≤ tf , the coupling to the thermal bath is plugged
out. The system is isolated and evolves deterministically according to a Hamiltonian
dynamics, with Hamiltonian Hλ(t)(p, q), which depends on time through the protocol
λ(t). For t ≥ tf , the Hamiltonian remains fixed at HλB(p, q). The system is recon-
nected to the thermal bath at T and evolves towards the equilibrium thermodynamic
state B. We shall denote by z = (p, q) the phase-space coordinate.

The initial distribution on phase space is the canonical distribution with Hamil-
tonian HλA and β = 1/kT :

PA (z0, t = 0) =
e−βHλA (z0)

ZA
.

In the time interval [0, tf ], the system evolves as

ṗ = −
∂Hλ(t)

∂q
, q̇ =

∂Hλ(t)

∂p

the initial condition (p, q) = (p0, q0) being sampled according to PA.

During this evolution, the work received by the system is given by

W =

∫ tf

0

dt
∂Hλ(t)(z(t))

∂t
=

∫ tf

0

dt ˙λ(t)
∂Hλ(t)(z(t))

∂λ
.

Note that the evolution is deterministic: the only randomness comes from the
initial condition.

For a Hamiltonian dynamics, we have

∂Hλ(t)

∂t
=
dHλ(t)

dt

and therefore

W =

∫ tf

0

dt
∂Hλ(t)(z(t))

∂t
= HλB(z(tf ))−HλA(z(0)).
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For a given value z0 of z(0), zf = z(tf ) is uniquely determined. Let us now calculate
the exponential average of the work:

〈e−βW 〉 =

∫
dz0 PA(z0)e−β(HλB (zf ))−HλA (z0))

=

∫
dz0

e−βHλA (z0)

ZA
e−β(HλB (zf ))−HλA (z0))

=

∫
dz0

e−βHλB (zf )

ZA
. (66)

To conclude, we must make the change of variables z0 → zf . This is a one-to-one
mapping by the Hamiltonian flow. The key remark is that the Jacobian of this
transformation is equal to 1, because of the Liouville Theorem, we have dz0 = dzf .

This concludes the original proof given by Jarzynski:

〈e−βW 〉 =
1

ZA

∫
dzf

∣∣∣∣∣∣dz0

dzf

∣∣∣∣∣∣ e−βHλB (zf ) =
ZB
ZA

= e−β∆F .

This Hamiltonian proof is mathematically rigorous but from the physics point
of view, plugging/unplugging the thermal environment seems artificial. In order
to overcome this difficulty, one has to give a mechanical representation of heat
exchanges. Here are some ways for achieving this task:

• Take the ensemble ‘System + Thermostat’ as a big isolated system, governed
by a full Hamiltonian.

• Represent the heat-exchanges between the System and Thermostat by a specific
(non-Hamiltonian) dynamics: Nosé-Hoover...

• Add to the System’s Hamilton equations, a thermal Langevin noise and a
dissipative friction term, related by the FDT that represent the effect of the
heat bath.

• Model thermal interaction by a Markov Dynamics.

One should be aware that Work Theorems are ‘metatheorems’: you have to
formulate Jarzynski’s identity precisely in different contexts and then to give proofs
for various settings (more than 15 different proofs are available).
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