
3. The Renormalisation Group

We’ve built up the technology of field theory and path integrals, and I’ve promised you

that this is su�cient to understand what happens at a second order phase transition.

But so far, we’ve made little headway. All we’ve seen is that as we approach the critical

point, fluctuations dominate and the Gaussian path integral is no longer a good starting

point. We need to take the interactions into account.

Sometimes in physics, you can understand a phenomenon just by jumping in and

doing the right calculation. And we will shortly do this, using perturbation theory

to understand how the �4 terms change the critical exponents. However, to really

understand second order phase transitions requires something more: we will need to set

up the right framework in which to think of physics at various length scales. This set of

ideas was developed in the 1960s and 1970s, by people like Leo Kadano↵, Michael Fisher

and, most importantly, Kenneth Wilson. It goes by the name of the Renormalisation

Group.

3.1 What’s the Big Idea?

Let’s start by painting the big picture. As in the previous section, we’re going to

consider a class of theories based around a single scalar field �(x) in d dimensions. (We

will consider more general set-ups in Section 4.) The free energy takes the now familiar

form,

F [�] =

Z
ddx


1

2
r� ·r�+

1

2
µ2�2 + g�4 + . . .

�
(3.1)

In what follows, we will look at what happens as we approach the critical point from

above T ! Tc. All the important temperature dependence in (3.1) is sitting in the

quadratic term, with

µ2
⇠ T � Tc (3.2)

In contrast to the previous section, we will allow µ2 to take either sign: µ2 > 0 in the

disordered phase, and µ2 < 0 in the ordered phase where h�i 6= 0.

There is one important change in convention from our earlier discussion: we have

rescaled the coe�cient of the gradient term to be 1/2; we will see the relevance of this

shortly. All other terms have arbitrary coe�cients.

– 53 –



So far we’ve focussed on just a few couplings, as shown in the free energy (3.1).

Here we’re going to expand our horizons. We’ll consider all possible terms in the free

energy, subject to a couple of restrictions. We’ll insist that the free energy is analytic

around � = 0, so has a nice Taylor expansion, and we will insist on the Z2 symmetry

� ! ��, so that only even powers of � arise. This means, for example, that we will

include the term �6 and (r2�)2 and �14 and �137(r� ·r�)r2� and so so. Each of these

terms comes with its own coupling constant. However, we don’t include terms like �17

because this violates the Z2 symmetry, nor 1/�2 because this is not analytic at � = 0.

Next, consider the infinite dimensional space, parameterised by the infinite number

of coupling constants. We will call this the theory space (although I should warn you

that this isn’t standard terminology). You should have in your mind something like

this:

But possibly bigger.

As we’ve seen, our interest is in computing the partition function

Z =

Z
D� e�F [�] (3.3)

Note that I’ve written the exponent as e�F rather than e��F . This is because the overall

power of � does nothing to a↵ect the physics; all the relevant temperature dependence

is in the coe�cient (3.2) while, for the quantities of interest near the critical point, this

overall factor can be set to � ⇡ 1/Tc. You can think that we’ve simply rescaled this

into the field �.

There is one more ingredient that we need to make sense of the path integral (3.3).

This is the UV cut-o↵ ⇤. Recall that, implicit in our construction of the theory is the

requirement that the Fourier modes �k vanish for suitably high momenta

�k = 0 for k > ⇤
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This arises because, ultimately our spins sit on some underlying lattice which, in turn,

was coarse-grained into boxes of size a. The UV cut-o↵ is given by ⇤ ⇠ 1/a.

Until now, the UV cut-o↵ has taken something of a back seat in our story, although

it was needed to render some of the path integral calculation in the previous section

finite. Now it’s time for ⇤ to move centre stage. As we will explain, we can use the

cut-o↵ to define a flow in the space of theories.

Suppose that we only care about physics on long distance scales, L. Then we have

no real interest in the Fourier modes �k with k � 1/L. This suggests that we can write

down a di↵erent theory, that has a lower cut-o↵,

⇤0 =
⇤

⇣

for some ⇣. As long as ⇤0
� 1/L, the scale of interest, our theory can tell us everything

that we need to know. Moreover, we know, at least in principle, how to construct such

a theory. We write our Fourier modes as

�k = ��

k + �+
k

where ��

k describe the long-wavelength fluctuations

��

k =

(
�k k < ⇤0

0 k > ⇤0

and �+
k describe the short-wavelength fluctuations that we don’t care about

�+
k =

(
�k ⇤0 < k < ⇤

0 otherwise

There are several other names for these variables that are used interchangeably. The

modes ��

k and �+
k are also referred to as low- and high-energy modes or, importing

language from quantum mechanics, slow and fast modes, respectively. In a rather

quaint nod to the electromagnetic spectrum, the short-distance, microscopic physics

that we care little about is often called the ultra-violet; the long-distance physics that

we would like to understand is the infra-red.

Similarly, we decompose the free energy, written in Fourier space, as

F [�k] = F0[�
�

k ] + F0[�
+
k ] + FI [�

�

k ,�
+
k ]
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Here FI [�
�

k ,�
+
k ] involves the terms which mix the short and long-wavelength modes.

The partition function (3.3) can then be written as

Z =

Z Y

k<⇤

d�k e�F =

Z Y

k<⇤0

d��

k e�F0[�
�

k ]

Z Y

⇤0<k<⇤

d�+
k e�F0[�

+
k ]e�FI [�

�

k ,�+
k ]

We write this as

Z =

Z
D�� e�F 0[��]

where F 0[�] is known as the Wilsonian e↵ective free energy. (In fairness, this term

is rarely used: you’re more likely to hear “Wilsonian e↵ective action” to describe the

analogous object in a path integral describing a quantum field theory.) We’re left with

a free energy which describes the long-wavelength modes, but takes into account the

e↵ects of the short wavelength modes. It is defined by

e�F 0[��] = e�F0[�
�

k ]

Z Y

⇤0<k<⇤

d�+
k e�F0[�

+
k ]e�FI [�

�

k ,�+
k ] (3.4)

In subsequent sections, we’ll put some e↵ort into calculating this object. However, at

the end of the day the new free energy F 0[��] must take the same functional form as

the original free energy (3.1), simply because we started from the most general form

possible. The only e↵ect of integrating out the high-momentum modes is to shift the

infinite number of coupling constants, so we now have

F 0[�] =

Z
ddx


1

2
�0
r� ·r�+

1

2
µ0 2�2 + g0�4 + . . .

�
(3.5)

We would like to compare the new free energy (3.5) with the original (3.1). However,

we’re not quite there yet because, the two theories are di↵erent types of objects – like

apples and oranges – and shouldn’t be directly compared. This is because the theory

is defined by both the free energy and the UV cut-o↵ and, by construction our two

theories have di↵erent cut-o↵s. This means that the original theory F [�] can describe

things that the new theory F 0[��] cannot, namely momentum modes above the cut-o↵

⇤0.

It is straightforward to remedy this. We can place the two theories on a level playing

field by rescaling the momenta in the new theory. We define

k0 = ⇣k

– 56 –



Now k0 takes values up to ⇤, as did k in the original theory. The counterpart of this

scaling in real space is

x0 =
x

⇣

This means that all lengths scales are getting smaller. You can think of this step as

zooming out, to observe the system on larger and larger length scales. As you do so,

all features become smaller.

There is one final step that we should take. The new theory F 0[�] will typically have

some coe�cient �0
6= 1 in front of the leading, quadratic gradient term. To compare

with the original free energy (3.1), we should rescale our field. We define

�0

k0 =
p
�0 ��

k

Which, in position space, reads

�0(x0) =
p

�0 ��(x) (3.6)

Now, finally, our free energy takes the form

F⇣ [�
0] =

Z
ddx


1

2
r�0

·r�0 +
1

2
µ2(⇣)�0 2 + g(⇣)�0 4 + . . .

�
(3.7)

We see that this procedure induces a continuous map from ⇣ 2 [1,1) onto the space

of coupling constants. Our original coupling constants in (3.1) are those evaluated at

⇣ = 1. As we increase ⇣, we trace out curves in our theory space, that look something

like the picture shown in Figure 22

We say that the coupling constants flow, where the direction of the flow is telling us

what the couplings look like on longer and longer length scales. The equations which

describe these flows – which we will derive shortly – are known, for historic reasons, as

beta functions.

These, then are the three steps of what is known as the renormalisation group (RG):

• Integrate out high momentum modes, ⇤/⇣ < k < ⇤.

• Rescale the momenta k0 = ⇣k.

• Rescale the fields so that the gradient term remains canonically normalised.
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Figure 22: Flows in theory space; the arrows are in the direction of increasing ⇣.

You may wonder why we didn’t just include a coupling constant �(⇣) for the gradient

term, and watch that change too. The reason is that we can always scale this away by

redefining �. But � is just a dummy variable which is integrated over the path integral,

so this rescaling can’t change the physics. To remove this ambiguity, we should pin

down the value of one of the coupling constants, and the gradient term (r�)2 is the

most convenient choice. If we ever find ourselves in a situation where �(⇣) = 0 for

some ⇣ then we would have to re-evaluate this choice. (We’ll actually come across an

example where it’s sensible to make a di↵erent choice in Section 4.3.)

The “renormalisation group” is not a great name. It has a hint of a group structure,

because a scaling by ⇣1 followed by a scaling by ⇣2 gives the same result as a scaling by

⇣1⇣2. However, unlike for groups, there is no inverse: we can only integrate out fields,

we can’t put them back in. A more accurate name would be the “renormalisation

semi-group”.

The Renormalisation Group in Real Space

The procedure we’ve described above is the renormalisation group in momentum space:

to get an increasingly coarse-grained description of the physics, we integrate out succes-

sive momentum shells. This version of the renormalisation group is most useful when

dealing with continuous fields and will be the approach we will focus on in this course.

There is a somewhat di↵erent, although ultimately equivalent, phrasing of the renor-

malisation group which works directly in real space. This approach works best when

dealing directly with lattice systems, like the Ising model. As we explained rather
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briefly in Section 1.3, one constructs a magnetisation field m(x) by coarse-graining

over boxes of size a, each of which contains many lattice sites. One can ask how the

free energy changes as we increase a, a procedure known as blocking. Ultimately this

leads to the same picture that we built above.

3.1.1 Universality Explained

Even before we do any calculations, there are general lessons to be extracted from the

framework above. Let’s suppose we start from some point in theory space. This can be

arbitrarily complicated, reflecting the fact that it contains informations about all the

microscopic, short-distance degrees of freedom.

Of course, we care little about most of these details so, in an attempt to simplify

our lives we perform a renormalisation group transformation, integrating out short dis-

tance degrees of freedom to generate a new theory which describes the long wavelength

physics. And then we do this again. And then we do this again. Where do we end up?

There are essentially two possibilities: we could flow o↵ to infinity in theory space,

or we could converge towards a fixed point. These are points which are invariant under

a renormalisation group transformation. (One could also envisage further possibilities,

such as converging towards a limit cycle. It turns out that these can be ruled out in

many theories of interest.)

Our interest here lies in the fixed points. The second step in the renormalisation

group procedure ensures that fixed points describe theories that have no characteristic

scale. If the original theory had a correlation length scale ⇠, then the renormalised

theory has a length scale ⇠0 = ⇠/⇣. (We will derive this statement explicitly below

when we stop talking and start calculating.) Fixed points must therefore have either

⇠ = 0 or ⇠ = 1.

In the disordered phase, with T > Tc, enacting an RG flow reduces the correlation

length. Pictorially, we have

RG flow
������!

In this case, shrinking the correlation length is equivalent to increasing the temperature.

The end point of the RG flow, at ⇠ = 0, is the infinite temperature limit of the theory.
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This is rather like flowing o↵ to infinity in theory space. As we will see, it is not

uncommon to end up here after an RG flow. But it is boring.

Similarly, in the ordered phase the RG flow again reduces the correlation length,

RG flow
������!

Now the end point at ⇠ = 0 corresponds to the zero temperature limit; again, it is a

typical end point of RG flow but is dull.

Theories with ⇠ = 1 are more interesting. As we saw above, this situation occurs

at a critical point where the theory contains fluctuations on all length scales. Now, if

we do an RG flow, the theory remains invariant. In terms of our visual configurations,

RG flow
������!

Note that the configuration itself doesn’t stay the same. (It is, after all, merely a

representative configuration in the ensemble.) However, as the fluctuations on small

distance scales shrink away due to RG, they are replaced by fluctuations coming in

from larger distance scales. The result is a theory which is scale invariant. For this

reason, the term “critical point” is often used as a synonym for “fixed point” of the

RG flow.

This picture is all we need to understand the remarkable phenomenon of universality:

it arises because many points in theory space flow to the same fixed point. Thus, many

di↵erent microscopic theories have the same long distance behaviour.

Relevant, Irrelevant or Marginal

It is useful to characterise the properties of fixed points by thinking about the theories

in their immediate neighbourhood. Obviously, there are an infinite number of ways we
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Figure 23: The critical surface. Irrelevant deformations from the critical point are shown

as dotted blue lines; the relevant deformation is is red.

can move away from the fixed point. If we move in some of these directions, the RG

flow will take us back towards the fixed point. These deformations are called irrelevant

because if we add any such terms to the free energy we will end up describing the same

long-distance physics.

In contrast, there will be some directions in which the RG flow will sweep us away

from the fixed point. These deformations are called relevant because if we add any such

terms to the free energy, the long-distance physics will be something rather di↵erent.

Examples of relevant and irrelevant deformations are shown in Figure 23. Much of the

power of universality comes from the realisation that the vast majority of directions

are irrelevant. For a given fixed point, there are typically only a handful of relevant

deformations, and an infinite number of irrelevant ones. This means that our fixed

points have a large basin of attraction, huge slices of the infinite dimensional theory

space all converging to the same fixed point. The basin of attraction for a particular

fixed point is called the critical surface.

Finally, it’s possible that our fixed point is not a point at all, but a line or a higher

dimensional surface living within theory space. In this case, if we deform the theory

in the direction of the line, we will not flow anywhere, but simply end up on another

fixed point. Such deformations are called marginal; they are rare, but not unheard of.
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Why High Energy Physics is Hard

Universality is a wonderful thing if you want to understand the low-energy, long-

wavelength physics. It tells you that you can throw away many of the microscopic

details because they are irrelevant for the things that you care about.

In contrast, if you want to understand the high-energy, short distance physics then

universality is the devil. It tells you that you have very little hope of extracting any

information about microscopic degrees of freedom if you only have access to information

at long distances. This is because many di↵erent microscopic theories will all give the

same answer.

As we saw in Section 2.3, quantum field theory is governed by the same mathematical

structure as statistical field theory, and the comments above also apply. Suppose, for

example, that you find yourself living in a technologically adolescent civilisation that

can perform experiments at distance scales of 10�16 cm or so, but no smaller. Yet, what

you really care about is physics at, say, 10�32 cm where you suspect that something

interesting is going on. The renormalisation group says that you shouldn’t pin your

hopes on learning anything from experiment.

The renormalisation group isn’t alone in hiding high-energy physics from us. In

gravity, cosmic censorship ensures that any high curvature regions are hidden behind

horizons of black holes while, in the early universe, inflation washes away any trace

of what took place before. Anyone would think there’s some kind of conspiracy going

on....

3.2 Scaling

The idea that second order phase transitions coincide with fixed points of the renor-

malisation group is a powerful one. In particular, it provides an organising principle

behind the flurry of critical exponents that we met in Section 1.

As we explained above, at a fixed point of the renormalisation group any scale must

be washed away. This is already enough to ensure that correlation functions must take

the form of a power-law,

h�(x)�(0)i ⇠
1

rd�2+⌘
(3.8)

Any other function would require a scale on dimensional grounds. The only freedom

that we have is in the choice of exponent which we have chosen to parameterise as ⌘.

One of the tasks of the RG procedure is to compute ⌘, and we will see how this works

in Section 3.5.
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However, even here there’s something of a mystery because usually we can figure out

the way things scale by doing some simple dimensional analysis. (If you would like to

refresh your memory, some examples of dimensional analysis can be found in Chapter

3 of the lectures on Dynamics and Relativity.) What does that tell us in the present

case?

We will measure dimension in units of inverse length. So, for example, [x] = �1

while [@/@x] = +1. The quantity F [�] must be dimensionless because it sits in the

exponent of the partition function as e�F . The first term is

F [�] =

Z
ddx

1

2
r� ·r�+ . . .

From this we learn that

[�] =
d� 2

2
(3.9)

Which, in turn, tells us exactly what the exponent of the correlation function must be:

⌘ = 0.

This is sobering. Dimensional analysis is one of the most basic tools that we have,

and yet it seems to be failing at critical points where experiment is showing that ⌘ 6= 0.

What’s going on?

A better way to think about dimensional analysis is to think in terms of scaling.

Suppose that we rescale all length as x ! x0 = x/⇣. How should other quantities

scale so that formula remains invariant? Stated this way, it’s clear that there’s a close

connection between dimensional analysis and RG. The correlation function (3.8) is

telling us that we should rescale �(x) ! �0(x0) = ⇣���(x), where

�� =
d� 2 + ⌘

2
(3.10)

This is called the scaling dimension. It di↵ers from the naive “engineering dimension”

[�] by the extra term ⌘/2 which is referred to as the anomalous dimension.

We still haven’t explained why the scaling dimension di↵ers from engineering dimen-

sion. The culprit turns out to be the third step of the RG procedure (3.6) where the

field � gets rescaled. In real space, this is viewed as coarse-graining � over blocks of

larger and larger size a. As we do so, it dresses � with this UV cut-o↵ scale ⇤ ⇠ 1/a,

often in a complicated and non-intuitive way. This means that the correlation function

(3.8) is actually

h�(x)�(0)i ⇠
a⌘

rd�2+⌘
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which is in full agreement with naive dimensional analysis. We can work with usual

engineering dimensions if we keep track of this microscopic distance scale a. But it is

much more useful to absorb this into � and think of a coarse-grained observable, with

dimension ��, that is the appropriate for measuring long distance correlations.

3.2.1 Critical Exponents Revisited

The critical exponents that we met in Section 1.2.3 are all a consequence of scale

invariance, and dimensional analysis based on the scaling dimension. Let’s see how

this arises.

We know that as we move away from the critical point by turning on µ2
⇠ T � Tc,

we introduce a new length scale into the problem. This is the correlation length, given

by

⇠ ⇠ t�⌫ with t =
|T � Tc|

Tc
(3.11)

Here t is called the reduced temperature, while ⌫ is another critical exponent that we

will ultimately have to calculate. Since ⇠ is a length scale, it transforms simply as

⇠ ! ⇠/⇣. In other words, it has scaling dimension �⇠ = �1. The meaning of the

critical exponent ⌫ is that the reduced temperature scales as t ! ⇣�tt, with

�t =
1

⌫
(3.12)

In what follows, our only assumption is that the correlation length ⇠ is the only length

scale that plays any role.

We start with the thermodynamic free energy, Fthermo(t), evaluated at B = 0. This

takes the form

Fthermo(t) =

Z
ddx f(t)

Because Fthermo is scale invariant at the fixed point, f(t) must have scaling dimension

d, which immediately tells us that

f(t) ⇠ td⌫

There is an intuitive way to understand this. At T close to Tc, the spins are correlated

over distances scales ⇠, and can be viewed as moving as one coherent block. The free

energy Fthermo is extensive, and so naturally scales as F ⇠ (L/⇠)d ⇠ td⌫ .
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From the thermodynamic free energy, we can compute the singular contribution to

the heat capacity near t = 0. It is

c ⇠
@2f

@t2
⇠ td⌫�2

⇠ t�↵

where the second relationship is there to remind us that we already had a name for the

critical exponent related to heat capacity. We learn that

↵ = 2� d⌫ (3.13)

This is called the Josephson relation or, alternatively, the hyperscaling relation.

The next critical exponent on the list is �. Recall that this relates the magnetisa-

tion in the ordered phase – which we used to call m and have now called � – to the

temperature as

� ⇠ t�

But the scaling dimensions of this equation only work if we have

�� = ��t ) � = ⌫�� =
(d� 2 + ⌘)⌫

2
(3.14)

The next two critical exponents require us to move away from the critical point by

turning on a magnetic field B. This is achieved through the addition of a linear termR
ddx B� in the free energy. (We didn’t include such a linear term in our previous

discussion of RG, but it can be added without changing the essence of the story.) The

scaling dimensions of this term must add to zero, giving

�� +�B = d ) �B =
d+ 2� ⌘

2

Now we can look at the various relationships. The behaviour of the susceptibility near

the critical point is

� =
@�

@B

����
T

⇠ t��

Once again, the scaling dimensions are enough to fix � to be

�� ��B = �
�

⌫
) � = ⌫(2� ⌘) (3.15)

which is sometimes called Fisher’s identity. Once again, there is an intuitive way to

understand this. The meaning of ⇠ is that the spins are no longer correlated at distances
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r � ⇠. This can be seen, for example, in our original formula (2.29). Using our earlier

expression (2.28) for the susceptibility, we have

� ⇠

Z ⇠

0

ddx
1

rd�2+⌘
⇠ ⇠2�⌘

⇠ t�⌫(2�⌘)

which again gives � = ⌫(2� ⌘).

The final critical exponent relates the magnetisation � to the magnetic field B when

we sit at the critical temperature t = 0. It should come as little surprise by now to

learn that this is again fixed by scaling analysis

� ⇠ B1/�
) � =

�B

��
=

d+ 2� ⌘

d� 2 + ⌘
(3.16)

We end up with four equations, relating ↵ (3.13), � (3.14), � (3.15) and � (3.16) to the

critical exponents ⌘ and ⌫. For convenience, let’s recall what values we claimed this

exponents take:

↵ � � � ⌘ ⌫

MF 4�d
2

1
2 1 3 0 1

2

d = 2 0 1
8

7
4 15 1

4 1

d = 3 0.1101 0.3264 1.2371 4.7898 0.0363 0.6300

where we’ve used the result (2.14), including quadratic fluctuations, for the mean field

value of ↵. We see that the relations are satisfied exactly for d = 2 and to within the

accuracy stated for d = 3. However, there’s a wrinkle because they only agree with the

mean field values when d = 4!

This latter point is an annoying subtlety and will be explained in Section 3.3.2. Our

main task is to understand why the mean field values don’t agree with experiment when

d < 4.

3.2.2 The Relevance of Scaling

The kind of dimensional analysis above also determines whether a given interaction is

relevant, irrelevant or marginal.

Consider an interaction term O(x) in the free energy,

F [�] ⇠

Z
ddx gO O(x) (3.17)

HereO can be �n or �m(r�)2 or any of the other infinite possibilities. In a spillover from

quantum field theory, the di↵erent interaction terms O(x) are referred to as operators.
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We’re interested in operators which, in the vicinity of a given point, transform simply

under RG. Specifically, suppose that, under the rescaling x ! x0 = x/⇣, the operator

has a well defined scaling dimension, transforming as

O(x) ! O
0(x0) = ⇣�OO(x) (3.18)

You can think of such operators as eigenstates of the RG process. From the free energy

(3.17), the scaling dimension of the coupling is

�gO = d��O

Under an RG flow, these couplings scale as gO ! ⇣d��OgO. We can see immediately

that gO either diverges or vanishes as we push forwards with the RG. Invoking our

previous classification, O is:

• Relevant if �O < d

• Irrelevant if �O > d

• Marginal if �O = d

The tricky part of the story is that it’s not always easy to identify the operators O

which have the nice scaling property (3.18). As we’ll see in the examples below, these

are typically complicated linear combinations of the operators �n and �n(r�)2 and so

on.

3.3 The Gaussian Fixed Point

It’s now time to start calculating. We will start by sitting at a special point in theory

space and enacting the renormalisation group. At this special point, only two quadratic

terms are turned on:

F0[�] =

Z
ddx


1

2
r� ·r�+

1

2
µ2
0 �

2

�
=

Z ⇤ ddk

(2⇡)d
1

2
(k2 + µ2

0)�k��k (3.19)

where we’ve added a subscript to the coe�cient µ2
0 in anticipation the fact that this

quantity will subsequently change under RG flow.

Because the free energy is quadratic in �, it has the property that there is no mixing

between the short and long wavelength modes, and so factorises as

F0[�] = F0[�
�] + F0[�

+]
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Integrating over the short wavelength modes is now easy, and results in an overall

constant in the partition function

e�F 0[��] =

Z
D�+e�F0[�+]

�
e�F0[��] = N e�F0[��]

This constant N doesn’t change any physics; it just drops out when we di↵erentiate

logZ to compute correlation functions. However, we’re not yet done with the our RG;

we still need to do the rescaling

k0 = ⇣k and �0

k0 = ⇣�w ��

k (3.20)

where w is constant that we will determine. Written in terms of the rescaled momenta,

we have

F0[�
�] =

Z ⇤/⇣ ddk

(2⇡)d
1

2
(k2 + µ2

0)�
�

k�
�

�k

=

Z ⇤ ddk0

(2⇡)d
1

2⇣d

✓
k0 2

⇣2
+ µ2

0

◆
⇣2w�0

k0�0

�k0

We can put this back in the form we started with if we take

w =
d+ 2

2
(3.21)

leaving us with

F 0

0[�
0] =

Z ⇤ ddk

(2⇡)d
1

2
(k2 + µ2(⇣))�0

k�
0

�k

The only price that we’ve paid for this is that the coe�cient of quadratic term has

become

µ2(⇣) = ⇣2µ2
0 (3.22)

This illustrates how the length scales in the problem transform under RG. Recall that

the correlation length (2.22) is ⇠2 ⇠ 1/µ2. We see that, under an RG procedure,

⇠ !
⇠

⇣

The fixed points obey dµ2/d⇣ = 0. As we anticipated previously, there are two of them.

The first is µ2 = 1. This corresponds to a state which has infinite temperature. It is

not where our interest lies. The other fixed point is at µ2 = 0. This is known as the

Gaussian fixed point.

– 68 –



3.3.1 In the Vicinity of the Fixed Point

As we mentioned previously, we would like to classify fixed points by thinking about

what happens when you sit near them. Do you flow into the fixed point, or get pushed

away?

We already have the answer to this question in one direction in coupling space. If

we add the term µ2�2, the scaling (3.22) tells us that µ2 gets bigger as we flow towards

the infra-red. This is an example of a relevant coupling: turning it on pushes us away

from the fixed point.

Here is another example: it is simple to repeat the steps above including the term

↵0(r2�)2 in the free energy. Upon RG, this coupling flows as ↵(⇣) = ⇣�2↵0. It is an

example of an irrelevant coupling, one which becomes less important as we flow towards

the infra-red.

More interesting are the slew of possible couplings of the form

F [�] =

Z
ddx

"
1

2
r� ·r�+

1

2
µ2
0�

2 +
1X

n=4

g0,n�
n

#
(3.23)

where, to keep the Z2 symmetry, we restrict the sum to n even. Here things are a

little more subtle because, once we turn these couplings, on the first step of the RG

procedure is no longer so simple. Integrating out the short distance modes will shift

each of these couplings,

g0,n ! g0n = g0,n + �gn

We will learn how to calculate the �gn in section 3.4. But, for now, let’s ignore this

e↵ect and concentrate on the second and third parts of the RG procedure, in which we

rescale lengths and fields as in (3.20). In this approximation, the operators �n enjoy

the nice scaling property (3.18),

x0 = x/⇣ and �0(x0) = ⇣���(x)

The free energy is then rescaled by

F [�0] =

Z
ddx0 ⇣d

"
1

2
⇣�2�2��r

0�0
·r

0�0 +
1

2
µ2
0⇣

�2���0 2 +
1X

n=4

g0,n⇣
�n���0n

#

To restore the coe�cient of the gradient term, we pick the scaling dimension

�� =
d� 2

2
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Figure 24: RG flows when d < 4 Figure 25: RG flows when d > 4

For once, the scaling dimension coincides with the engineering dimension (3.9): �� =

[�]. This is because we’re looking at a particularly simple fixed point. Note that this

is related to our earlier result (3.21) by �� = d�w, with the extra factor of d coming

from the
R
ddk in the definition of the Fourier transform.

Our free energy now takes the same form as before,

F [�0] =

Z
ddx0

"
1

2
r

0�0
·r

0�0 +
1

2
µ2(⇣)�0 2 +

1X

n=4

gn(⇣)�
0n

#

where

gn(⇣) = ⇣d�n��g0,n = ⇣(1�n/2)d+ng0,n (3.24)

We see that the way these coupling scale depends on the dimension d. For example,

the coe�cient for �4 scales as

g4(⇣) = ⇣4�dg0,4

We learn that �4 is irrelevant for d > 4 and is relevant for d < 4. According to the

analysis above, when d = 4, we have g4(⇣) = g0,4 and the coupling is marginal. In this

case, however, we need to work a little harder because the leading contribution to the

scaling will come from the corrections �g4 that we neglected. We’ll look at this in the

next section.

Restricting to the plane of couplings parameterised by µ2 and g4, we see that (if we

neglect the interactions) the RG flow near the origin is very di↵erent when d > 4 and

d < 4. These are shown in the two figures. In the former case, we need to tune only

µ2
⇠ T � Tc if we want to hit the fixed point; the other couplings will take care of

themselves. In contrast, when d < 4 both of these couplings are relevant. This means

that we would need to tune both to zero if we want to hit the Gaussian fixed point.
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We can tally this with our discussion in Section 3.2. The fact that the scaling

dimension �� coincides with the naive engineering dimension [�] immediately tells us

that ⌘ = 0. Meanwhile, the scaling of µ2
⇠ t is given by �t = [g2] = 2, which tells us

that ⌫ = 1/2. From this we can use (3.13) - (3.16) to extract the remaining critical

exponents. These agree with mean field for d = 4, but not for d  4. (We will address

the situation in d > 4 in Section 3.3.2.)

It is no coincidence that this behaviour switches at d = 4, which we previously

identified as the upper critical dimension. In an experiment, one can always change µ2

by varying the temperature. However, one may not have control over the �4 couplings

which typically correspond to some complicated microscopic property of the system. If

�4 is irrelevant, we don’t care: the system will drive itself to the Gaussian fixed point.

In contrast, if �4 is relevant the system will drive itself elsewhere. This is why we don’t

measure mean field values for the critical exponents: these are the critical exponents

of the Gaussian fixed point.

The coupling for �6 scales as

g6(⇣) = ⇣6�2dg0,6

This is irrelevant in d > 3, relevant in d < 3 and, naively, marginal in d = 3.

Note that in dimension d = 2 all of the couplings gn�n are relevant.

So far, this all looks rather trivial. However, things become much more interesting

at other fixed points. For example, around most fixed points ��n 6= n��. Indeed,

around most fixed points neither � nor �n will have well defined scaling dimension;

instead those operators to which one can assign a scaling dimension consist of some

complicated linear combination of the �n. We will start to understand this better in

Section 3.4.

The Meaning of Mean Field

The meaning of the phrase “mean field theory” has evolved as these lectures have

progressed. We started in Section 1.1.2 by introducing mean field as a somewhat dodgy

approximation to the partition function. Subsequently, we used the expression “mean

field theory” to mean writing down a free energy F [�] and focussing on the saddle point

equations. This saddle point is a good approximation to the partition function only

when the couplings are small; this is true only in the vicinity of the Gaussian fixed

point. For this reason, using mean field theory is usually synonymous with working at

the Gaussian fixed point, and ignoring the e↵ect of operators like �4 on fluctuations.
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Figure 26: The phase diagram of the

Ising model.

Figure 27: The phase diagram of the

liquid-gas system.

(Of course, mean field still retains the �4 term in the ordered phase, where it is needed

to stabilise the potential.)

Interactions that Break Z2 Symmetry

Until now, we have have restricted ourselves to interactions �n with n even, to zealously

safeguard the Z2 symmetry � ! ��. One particularly nice aspect of RG is that if we

restrict ourselves to a class of free energies that obey a certain symmetry, then we will

remain in that class under RG. We’ll see examples of this in Section 3.4.

However, suppose that we sit outside of this class and turn on interactions �n with n

odd. The leading order e↵ect is the magnetic field B� that we included in our original

Ising model. This is always a relevant interaction. This means that if we want to hit

the critical point, we must tune this to zero.

It may be more natural to tune B = 0 in some systems that others. For example,

a magnet in the Ising class automatically has B = 0 unless you choose to submit it to

a background magnetic field. This means that it’s easy to hit the critical point: just

heat up a magnetic and it will exhibit a second order phase transition.

In contrast, in the liquid gas system, setting “B = 0” is less natural. Unlike in the

Ising model, there is no Z2 symmetry manifest in the microscopic physics of gases.

Instead, it is an emergent symmetry which relates the density of liquid and gas states

at the phase transition. Correspondingly, if we simply take a liquid and heat it up then

we’re most likely to encounter a first order transition, or no transition at all. If we want

to hit the critical point, we must now tune the two relevant operators: temperature µ2

and pressure, which corresponds to the linear term with coe�cient B.

In both situations above we really need to tune two relevant couplings to zero to hit

the critical point. Of these, one is even under Z2 and one is odd under Z2. Doing this

– 72 –



will allow us to hit a fixed point with two relevant deformations, one even one odd.

This is the Gaussian fixed point in d > 4 and is something else (to be described below)

in d < 4.

What about higher order interactions �n with n odd. If we have to tune �, do we not

also need to tune �3? It turns out that that the �3 interaction is redundant. If you have

a free energy with no Z2 symmetry, and all powers of �n, then you can always redefine

your field as � ! � + c for some constant c. This freedom allows you to eliminate

the �3 term. Note that if your free energy enjoys the Z2 symmetry � ! �� then it

prohibits you from making this shift.

3.3.2 Dangerously Irrelevant

We’ve learned that the �4 interaction is irrelevant for d � 4, and so one can hit the

Gaussian fixed point by tuning just one parameter: µ2 = 0.

However, there’s one tricky issue that we haven’t yet explained: the mean field

exponents agree with the scaling analysis of Section 3.2 only when d = 4. Comparing

the two results, we have

↵ � � � ⌘ ⌫

MF 4�d
2

1
2 1 3 0 1

2

Scaling 4�d
2

d�2
4 1 d+2

d�2 0 1
2

where we’ve used the result (2.14), including quadratic fluctuations, for the mean field

value of ↵. This agrees with the scaling analysis. However, for d > 4, the exponents

� and � di↵er. It turns out that the results from Landau mean field are correct, and

those from the scaling analysis are wrong. Why?

To understand this, let’s recall our scaling argument from Section 3.2. We set B = 0

and focus on the critical exponent �. The magnetisation scales with the temperature

t = |T � Tc|/Tc as

m ⇠ t�

Here m is identified with the scalar field �. Scaling analysis gives �� = ��t. But both

mean field and scaling analysis agree that �t = 1/⌫ = 2 and �� = (d� 2)/2, and this

gives � = (d� 2)/4, rather than the mean field result � = 1/2.
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However, we were a little quick in the scaling analysis because we neglected the

quartic coupling g4. Mean field really told us (1.31),

m0 ⇠

✓
t

g4

◆1/2

But both t and g4 scale under RG flow. The scaling dimension of g4 is �g4 = 4� d and

now the mean field result, with � = 1/2 is fully compatible with scaling.

There’s a more general lesson to take from this. It is tempting, when doing RG,

to think that we can just neglect the irrelevant operators because their coe�cients

flow to zero as we approach the infra-red. However, sometimes we will be interesting

in quantities – such as the magnetisation above – which have the irrelevant coupling

constants sitting in the denominator. In this case, one cannot just blindly ignore

these irrelevant couplings as they a↵ect the scaling analysis. When this happens, the

irrelevant coupling is referred to as dangerously irrelevant.

3.3.3 An Aside: The Emergence of Rotational Symmetry

This is a good point to revisit an issue that we previously swept under the rug. We

started our discussion with a lattice model, but very quickly moved to the continuum,

field theory. Along the way we stated, without proof, that we expect the long distance

physics to enjoy rotational invariance and we restricted our attention to field theories

with this property. Why are we allowed to do this?

To make the discussion concrete, consider a square lattice in d = 2 dimensions. This

has a discrete Z4 rotational symmetry, together with a Z2 reflection symmetry. These

combine together into the dihedral group D8.

Our field theory description will respect the D8 symmetry of the underlying lattice

model, together with the Z2 symmetry � ! �� which ensures that fields come in pairs.

But this would appear to be much less powerful than the full O(2) continuous rotation

and reflection symmetry. Have we cheated?

Let’s see what kind of terms we might expect. First, there are some simple terms

that are prohibited by the dihedral symmetry. For example a lone term (@1�)2 would

break the x1 ! x2 discrete rotational symmetry and so would not appear in the free

energy. Similarly, a term �@1� breaks the x1 ! �x1 symmetry. (On top of this, it

is also a total derivative and so doesn’t contribute to the free energy.) The lowest

dimension term that includes derivatives and is compatible with the discrete symmetry

is

O2 ⇠ (@1�)
2 + (@2�)

2
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But this term happens to be invariant under the full, continuous O(2) rotational sym-

metry. We should keep going. The first term that preserves D8, but not SO(2), is

O4 ⇠ �@4
1�+ �@4

2�

There is no reason not to add such terms to the free energy and, in general, we expect

that these will be present in any field theoretic description that accurately describes

the microscopic physics. However, this operator has dimension �O4 = d + 2 and so

is irrelevant. This means that it gets washed away by the renormalisation group, and

the long wavelength physics is invariant under the full O(2) symmetry. We say that

the continuous rotational symmetry is emergent. A similar argument holds for higher

dimensions.

3.4 RG with Interactions

The previous section left two questions hanging. What happens to the renormalisation

of the coupling g4 in d = 4 dimensions? And where does the flow of g4 take us in d < 4

dimensions? In this section we will answer the first of these. In Section 3.5 we will see

that our analysis also contains the answer to the second.

We now repeat our RG procedure, but with a di↵erent starting point in theory space,

F [�] =

Z
ddx


1

2
r� ·r�+

1

2
µ2
0�

2 + g0�
4

�

The renormalisation group procedure tells us to split the Fourier modes of the field into

long and short wavelengths,

�k = ��

k + �+
k (3.25)

and write the free energy as

F [�] = F0[�
�] + F0[�

+] + FI [�
�,�+]

where we take F0[�] to coincide with the quadratic terms (3.19), and the interaction

terms are

FI [�] =

Z
ddx g0�

4

Note that we’ve chosen to include, for example, (��)4 in the interaction terms rather

than F0. This is a matter of convention.
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The e↵ective free energy for ��

k , defined in (3.4), is given by

e�F 0[��] = e�F0[�
�

k ]

Z
D�+

k e�F0[�
+
k ]e�FI [�

�

k ,�+
k ]

There is a nice interpretation of this functional integral
R
D�+

k . We can think of it

as computing the expectation value of e�FI [�
�

k ,�+
k ], treating �+

k as the random variable

with Gaussian distribution e�F0[�
+
k ]. In other words, we can write this as

e�F 0[��] = e�F0[�
�

k ]
D
e�FI [�

�

k ,�+
k ]
E

+

where the subscript on h·i+ is there to remind us that we are averaging over the �+
k

modes only. We take the definition of the path integral to be suitably normalised so

that h1i+ = 1. Taking the log of both sides,

F 0[��] = F0[�
�

k ]� log
D
e�FI [�

�

k ,�+
k ]
E

+
(3.26)

Our task is to compute this.

We can’t do this functional integral exactly. Instead, we resort to perturbation

theory. We assume that g0 is suitably small, and expand. (The dimensionless small

parameter is g0µ
d�4
0 .) We first Taylor expand the exponential,

log
D
e�FI [�

�

k ,�+
k ]
E

+
= log

⌧
1� FI +

1

2
F 2
I + . . .

�

+

and we then Taylor expand log(1 + x), to get

log
D
e�FI [�

�

k ,�+
k ]
E

+
= �hFIi+ +

1

2

h⌦
F 2
I

↵
+
� hFIi

2
+

i
+ . . . (3.27)

where, in general, the nth term is (�1)n ⇥ nth cumulant of FI . This also follows from

the same kind of manipulations that we did at the beginning of Section 2.2. We will

deal with each of terms above in turn.

3.4.1 Order g0

At leading order in g0, we need to compute
⌦
FI [�

�

k ,�
+
k ]
↵
+
. The first order of business

is to expand the interaction terms (3.26) in Fourier modes. We have

FI [�
�

k ,�
+
k ] = g0

Z 4Y

i=1

ddki
(2⇡)d

⇥ (terms with �)⇥ (2⇡)d�d(
X

i

ki)

There are five di↵erent “terms with �”, most of which do not give anything interesting.

These five terms are:
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i) ��

k1
��

k2
��

k3
��

k4
: This term doesn’t include any �+

k , the average is trivial. It carries

over to give the term g0
R
ddx �� 4 in the e↵ective free energy.

ii) 4��

k1
��

k2
��

k3
�+
k4
: This term has just a single �+

k and so vanishes when averaged over

the Gaussian ensemble.

iii) 6��

k1
��

k2
�+
k3
�+
k4
: This term is interesting. We will look at it more closely below.

For now, note that the factor of 6 comes from the di↵erent choices of momentum

labels.

iv) 4��

k1
�+
k2
�+
k3
�+
k4
: This term is cubic in �+

k and, like any term with an odd number

of insertions, vanishes when averaged over the Gaussian ensemble.

v) �+
k1
�+
k2
�+
k3
�+
k4
: This term doesn’t include any ��

k , it simply gives constant to the

free energy. It will not be important here.

We learn that we need to compute just a single term,

hFIi+ = 6g0

Z 4Y

i=1

ddki
(2⇡)d

��

k1
��

k2
⇥
⌦
�+
k3
�+
k4

↵
+
⇥ (2⇡)d�d(

X

i

ki) (3.28)

But this is the same kind of correlation function that we computed in Section 2.2: it is

given by

⌦
�+
k�

+
k0

↵
+
= (2⇡)d�d(k+ k0)G0(k) with G0(k) =

1

k2 + µ2
0

(3.29)

After playing around with the delta-functions, and relabelling momentum variables,

we’re left with our first correction to the free energy,

hFIi+ = 6g0

Z ⇤/⇣

0

ddk

(2⇡)d
��

k�
�

�k

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

where the limits on the
R
dq integral reflect the fact that we’ve only integrated out the

short wavelength modes, whose momenta lie within this band. We see that, at order

g0, we get a correction only to the quadratic term whose coe�cient becomes

µ2
0 ! µ0 2 = µ2

0 + 12g0

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

(3.30)

Finally, we should enact the rescaling steps of the renormalisation group. This takes

the same form as before (3.20),

k0 = ⇣k and �0

k = ⇣�w��

k/⇣ with w =
d+ 2

2

– 77 –



This gives the same scaling of the parameters that we saw in Section 3.3. We have

µ2(⇣) = ⇣2
✓
µ2
0 + 12g0

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

◆
and g(⇣) = ⇣4�dg0 (3.31)

The upshot of this calculation is that turning on a �4 coupling will give rise to a

quadratic �2 coupling under RG flow. This is typical of these kinds of calculations:

couplings of one type will induce others.

The coe�cient of the �2 term is particularly important for our story, since the critical

point is defined to be the place where this vanishes. We see that it’s not so easy to

make this happen. You can’t simply set µ2
0 = 0 at some high scale and expect to hit

criticality. Indeed, the result (3.31) tells us that, at long wavelengths, the “natural”

value is µ2
⇠ g0⇤d�2, which is typically large. If you want to hit the critical point, you

must “fine tune” the original coe�cient µ2
0 to cancel the new terms that are generated

by RG flow.

You might think that this calculation answers the question of what happens to the

theory in d = 4 when we turn on g�4. It certainly tells us that turning on this coupling

will induce the relevant coupling µ2�2 and so take us away from the Gaussian fixed

point. However, a closer look at (3.31) reveals that it’s possible to turn on a combination

of g0 and µ2
0, so that µ2(⇣) remains zero. This combination is a marginal coupling. We

learn that, at this order, there remains one relevant and one marginal deformation.

3.4.2 Order g20

The corrections to the �4 terms first arise at order g20. Here we have the contribution

F 0[��] ⇠ �
1

2

�
hF 2

I i � hFIi
2
�

(3.32)

Expanding out hF 2
I i, we find 256 di↵erent terms. We will see how to organise them

shortly, but for now we make a few comments before focussing on the term of interest.

Some of the terms in hF 2
I i will result in corrections that cannot be written as a local

free energy, but are instead of the form
�R

ddxf(��)
�2

for some f(�). These terms will

be cancelled by the hFIi
2 terms. This is a general phenomena which you can learn more

about in the lectures on Quantum Field Theory. In terms of Feynman diagrams, which

we will introduce below, these kind of terms correspond to disconnected diagrams.
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The terms that we care about in hF 2
I i are those which can be written as local cor-

rections to the free energy. Of immediate interest for us are a subset of terms in

F 2
I ⇠

R
ddx ddy �4(x)�4(y), given by

1

2
hF 2

I i+ ⇠
1

2

✓
4

2

◆2

g20

Z ⇤/⇣

0

4Y

i=1


ddki
(2⇡)d

��

ki

� Z ⇤

⇤/⇣

4Y

j=1


ddqj
(2⇡)d

�
h�+

q1
�+
q2
�+
q3
�+
q4
i+ (3.33)

⇥ (2⇡)2d�d(k1 + k2 + q1 + q2)�
d(k3 + k4 + q3 + q4)

Let’s explain what’s going on here. Each �(x) is decomposed into Fourier modes �� and

�+. The same is true for each �(y). In the above term, we have chosen two �� out of

the �4(x) and two �� out of the �4(y); the remaining terms are �+. Each combinatoric

factor
�
4
2

�
= 6 out front reflects the choice of picking two �� from �4. Meanwhile,

the two delta functions come from doing the
R
ddx and

R
ddy integrals respectively.

Matching the momenta in the arguments of the delta functions to the �± tells us that

we’ve picked two �� from the �4(x) and two �� from �4(y) (as opposed to, say, all

four from �4(y)).

To proceed, we need to compute the four-point function h�+
q1
�+
q2
�+
q3
�+
q4
i+. To do this

we need a result known as Wick’s theorem.

Wick’s Theorem

As we proceed in our perturbative expansion, the integrals start to blossom. From the

form of the expansion (3.27), we can see that the integrand will involve expectation

values of the form h�+
k1
. . .�+

kl
i+. There is a simple way to compute expectation values

of this type in Gaussian ensembles. This follows from:

Lemma: Consider n variables �a drawn from a Gaussian ensemble. This means that,

for any function f(�), the expectation value is

hf(�)i =
1

N

Z
1

�1

dn� f(�) e�
1
2�·G

�1�

for some invertible n⇥ n matrix G. The normalisation factor is N = det1/2(2⇡G) and

ensures that h1i = 1. The following identity then holds:

⌦
eBa�a

↵
= e

1
2Bah�a�biBb (3.34)

for any constant Ba.
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Proof: This is straightforward to show since we can just evaluate both sides

⌦
eBa�a

↵
=

1

N

Z
1

�1

dny e�
1
2�·G

�1�+B·�

=
1

N

Z
1

�1

dny e�
1
2 (��GB)·G�1(��GB)e

1
2B·GB = e

1
2B·GB = e

1
2Bah�a�biBb

where, in the last step, we used the fact that h�a�bi = Gab. ⇤

The Taylor expansion of the identity (3.34) gives us the expressions that we want.

The left-hand-side is

⌦
eBa�a

↵
= 1 +Bah�ai+

1

2
BaBbh�a�bi+

1

3!
BaBbBch�a�b�ci+

1

4!
BaBbBcBdh�a�b�c�di+ . . .

Meanwhile, the right-hand-side is

e
1
2Bah�a�biBb = 1 +

1

2
BaBbh�a�bi+

1

8
BaBbBcBdh�a�bih�c�di+ . . .

Now we just match powers of Ba on both sides. We immediately learn that

h�a1 . . .�ali = 0 for l odd

Our real interest is in l even. Here we have to be a little careful because multiplying by

the string of B’s automatically symmetrises the products of h�a�bi over the a = 1, . . . , n

indices. So, for example, comparing the B4 terms gives

h�a�b�c�di = h�a�bih�c�di+ h�a�cih�b�di+ h�a�dih�b�ci (3.35)

It’s not hard to convince yourself that

h�a1 . . .�a2li = h�a1�a2i . . . h�a2l�1
�a2li+ symmetrised

This leaves us with a sum over all pairwise contractions. This result is known as Wick’s

theorem.

Back to the Free Energy

We can now apply Wick’s theorem to our free energy (3.33),

h�+
q1
�+
q2
�+
q3
�+
q4
i+ = h�+

q1
�+
q2
i+h�

+
q3
�+
q4
i+ + h�+

q1
�+
q3
i+h�

+
q2
�+
q4
i+ + h�+

q1
�+
q4
i+h�

+
q2
�+
q3
i+

Recall that each of these propagators comes with a delta function,

h�+
q�

+
q0i+ = (2⇡)d�d(q+ q0)G0(q)
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The trick is to see how these new delta functions combine with the original delta

functions in (3.33). There are two di↵erent structures that emerge. The first term,

gives (ignoring factors of 2⇡ for now)

Z 4Y

j=1

ddqj h�+
q1
�+
q2
i+h�

+
q3
�+
q4
i+�

d(k1 + k2 + q1 + q2) �
d(k3 + k4 + q3 + q4)

⇠

Z
ddq2d

dq4 G0(q2)G0(q4) �
d(k1 + k2) �

d(k3 + k4) (3.36)

We’re still left with two delta functions over the k variables. This means that when

we go back to real space, this term does not become a local integral. Instead, if you

follow it through, it becomes a double integral of the form
�R

ddx ��(x)2
�2
. As we

explained after (3.32), these terms are ultimately cancelled by corresponding terms in

hFIi
2. They are not what interests us.

Instead, we care about the second and third terms in theWick expansion of h�+
q1
�+
q2
�+
q3
�+
q4
i+.

Each of them gives a contribution of the form

Z 4Y

j=1

ddqj h�+
q1
�+
q3
i+h�

+
q2
�+
q4
i+�

d(k1 + k2 + q1 + q2) �
d(k3 + k4 + q3 + q4)

⇠

Z
ddq1d

dq2 G0(q1)G0(q2) �
d(k1 + k2 + q1 + q2) �

d(k3 + k4 � q1 � q2)

⇠

Z
ddq G0(q)G0(|k1 + k2 + q|) �d(k1 + k2 + k3 + k4) (3.37)

where, in going to the last line, we have done the integral
R
ddq2 and relabelled q1 = q.

Now we have just a single delta function over ki and, correspondingly, when we go back

to real space this will give a local contribution to the free energy. Indeed, the terms

(3.33) now become

1

2
hF 2

I i+ ⇠

✓
4

2

◆2

g20

Z ⇤/⇣

0

4Y

i=1


ddki
(2⇡)d

��

ki

�
f(k1 + k2) (2⇡)

d�d(
X

i

ki) (3.38)

where the factor of 1
2 in (3.33) has disappeared because we get two contributions from

the Wick expansion, each of which gives the same contribution (3.37). The remaining

integral over
R
ddq is hidden in the function f(k), which is given by

f(k1 + k2) =

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

1

(k1 + k2 + q)2 + µ2
0

(3.39)
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This is not as complicated as it looks. We can write it as

f(k1 + k2) =

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

(q2 + µ2
0)

2
(1 +O(k1,k2))

All the terms that depend on the external momenta k1 and k2 will generate terms in the

free energy of the form k2(��)4 ⇠ (��)2r2(��)2. These are irrelevant terms that will

not be interesting for us other than to note that once we let loose the dogs of RG, we

will no longer sit comfortably within some finite dimensional subspace of the coupling

constants. Integrating out degrees of freedom generates all possible terms consistent

with symmetries; flowing to the IR allows us to focus on the handful of relevant ones.

The contribution (3.38) to the free energy is what we want. Translating back to real

space, we learn that the quadratic term gets corrections at this order. We have

g0 ! g00 = g0 � 36g20

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

(q2 + µ2
0)

2
(3.40)

The minus sign in (3.40) is important. It can be traced to the minus sign in (3.32),

and it determines the fate of the would-be marginal coupling g�4 in d = 4 dimensions.

Recall that, in d = 4, there is no contribution to the running of g(⇣) from the second

and third steps of RG. Here, the leading contribution comes from the first step and, as

we see above, this causes g(⇣) to get smaller as ⇣ increases. This means that the theory

in d = 4 is similar in spirit to those in d > 4, with �4 an irrelevant coupling.

However, in d = 4, the RG flow for g happens much more slowly
µ2

g

d=4

Figure 28:

than other couplings. For this reason it is sometimes called marginally

irrelevant, to highlight the fact that it only failed to be marginal when

the perturbative corrections were taken into account. This is a general

phenomenon: most couplings which naively appear marginal will end

up becoming either marginally relevant or marginally irrelevant due

to such corrections. In the vast majority of cases, the coupling turns

out to be marginally irrelevant. However, there are a number of very

important examples – the Kondo e↵ect and non-Abelian gauge theories

prominent among them – where a marginal coupling turns relevant.

We’ll see such an example in Section 4.3.

Finally, just because g is marginally irrelevant in d = 4 does not mean that you can

turn it on and expect to flow back to the Gaussian fixed point. As depicted in the

diagram, the coupling mixes with µ2. If you want to flow back to the Gaussian fixed

point, you need to turn on a particular combination of µ2
0 and g0.

– 82 –



3.4.3 Feynman Diagrams

The calculation above needed some care. As we go to higher order terms in the ex-

pansion, the number of possibilities starts to blossom. Fortunately, there is a simple

graphical formalism to keep track of what’s going on.

Suppose that we’re interested in a term in the expansion (3.27) of the form gp0(�
�)n(�+)l.

This can be represented by one or more Feynman diagrams. Here is the game:

• Each ��

k is represented by an external, solid line.

• Each �+
k is represented by a dotted line.

• The dotted lines are connected with each other to form internal loops. They are

paired up in all possible ways, reflecting the pair contraction of Wick’s theorem.

No dotted lines can be left hanging which means that the diagrams only make

sense for l even.

• Each factor of g0 is represented as a vertex at which four lines meet.

• Each line has an attached momentum k which is conserved as we move around

the diagram.

Each of these diagrams is really shorthand for an integral. The dictionary is as follows:

• Each internal line corresponds to an insertion of the propagator
⌦
�+
k�

+
k0

↵
+
defined

in (3.29)

• For each internal loop, there is an integral
R
ddq/(2⇡)d.

• Each vertex comes with a power of g0(2⇡)d�d(
P

i ki) where the delta function

imposes momentum conservation, with the convention that all momenta are in-

coming.

• There are a bunch of numerical coe�cients known as symmetry factors.

This means that a term in the e↵ective action of the form gp0(�
�)n will correspond to

a diagram with n external lines and p vertices. We can see what these diagrams look

like for some of the terms that we’ve met so far. At order g0, the rules don’t allow us

to draw diagrams with an odd number of ��

k . The term ��

k1
��

k2
��

k3
��

k4
in the expansion

gives the trivial contribution to �4. In diagrams, it is

k
1

k
2

k
4

k
3

= g

Z
ddx (��)4 (3.41)
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Similarly, the (�+)4 terms are �+
k1
�+
k2
�+
k3
�+
k4

⇠
k

1

k
2

k
4

k
3

, but because these are internal

lines we should join them up to get a diagram that looks like .

The interesting term at order g0 is ��

k1
��

k2
�+
q�

+
�q, which includes both ��

k and �+
k .

This was evaluated in (3.28). It is represented by the diagram

k2
k1

q

= 6g0

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

Z
ddx (��)2

where the integral arises because the momentum q of the �+ excitation running in the

loop is not determined by momentum conservation of the external legs. Such corrections

are said to arise from loop diagrams, as opposed to the tree diagrams of (3.41).

Finally, at order g20, the correction (3.38) to the �4 coupling comes from the

k3

k4k1

k + k  + 1 2

q
k2

q

= 36g20

Z ⇤/⇣

0

4Y

i=1


ddki
(2⇡)d

��

ki

�
f(k1 + k2) (2⇡)

d�d(
X

i

ki)

where the function f(k1+k2) was given in (3.39) and contains two propagators associ-

ated to the �+ fields running in the loop. Evaluating this leads to the correction (3.40),

as well as a slew of higher derivative couplings.

Any graph that we can draw will appear somewhere in the expansion of loghe�FI [�
�

k ,�+
k ]
i+

given in (3.27). As we noted above, this is a cumulant expansion which has the rather

nice graphical interpretation that only connected graphs appear in the expansion. For

example, at order g20, the disconnected graph that appears in the expansion of hF 2
I i+

that looks like will be cancelled by the same disconnected graph appearing in

�hFIi
2
+.

In the language of quantum field theory, it’s tempting to view the lines in the Feyn-

man diagrams as the worldlines of particles. There is no such interpretation in the

present case: they’re simply useful.

More Diagrams

We can now also look at other diagrams and see what role they play. For example,

you might be worried about the diagram . This is strictly vanishing, because
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the incoming momentum for lone �� leg is forced to be equal to the intermediate

momentum for the �+ propagator. Yet the momentum for �� and �+ can never be

equal .

There are, however, two further diagrams that we neglected which do have an inter-

esting role to play. Both of these are two loop diagrams. They will not a↵ect what

we’re going to do later but, nonetheless, are worth highlighting. The first diagram is

= g20

Z
ddk

(2⇡)d
1

2
C(⇤)��

k�
�

�k

for some C(⇤) whose exact form will not be important. This gives rise to a shift in the

quadratic term, so that (3.30) is replaced by

µ2
0 ! µ0 2 = µ2

0 + 12g0

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

+ g20C(⇤)

The second diagram is

= g20

Z
ddk

(2⇡)d
1

2
A(k,⇤)��

k�
�

�k (3.42)

We’ve called the result of this diagram A(k,⇤); again we won’t need its detailed form.

Importantly, it is now a function of the external momentum k. This means that it gives

rise to two e↵ects that are (in a technical sense) relevant. The first is that there is yet

another renormalisation of µ2, this time depending on A(0,⇤). The second is novel:

upon Taylor expanding A(k) = A(0)+ 1
2k

2A00(0)+ . . ., we get a contribution to the the

gradient term, which is now

F 0[�] =

Z
ddx

1

2
�0
r� ·r�+ . . . with �0 = 1� 2g20A

00(0,⇤)

This, in turn, means that we need a new rescaling of the field. To order g20, we can

write this as

k0 = ⇣k and �0

k =
⇣�(d+2)/2

1� g20A
00(0,⇤)

��

k/⇣

This last, additional step is known as field renormalisation. (Actually, that’s not com-

pletely true. It should be known as “field renormalisation”, but instead is known as

“wavefunction renormalisation”. This a terrible name, one that betrays the long and

deep confusion that permeated the origins of this subject. Even in the context of quan-

tum field theory, this rescaling has nothing to do with wavefunctions. It is a rescaling

of fields!)
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Although we won’t compute this field renormalisation exactly, it is nonetheless im-

portant for this is what gives rise to the anomalous dimension of �, and this was

underlying the whole scaling analysis of Section 3.2.

3.4.4 Beta Functions

It is useful to write down equations which describe the flow of the coupling constants.

These are first order di↵erential equations which, for historic reasons are known as beta

functions. It turns out to be convenient to parameterise the change in cut-o↵ as

⇤0 =
⇤

⇣
= ⇤e�s

The renormalisation group transformation described above tells us that each coupling

changes with scale, gn = gn(s). The beta function is defined as

dgn
ds

= �n(gn)

Note that s increases as we flow towards the IR. This means that a positive beta

function tells us that gn gets stronger in the IR, while a negative beta function means

that gn gets weaker in the IR. (As an aside: this is the opposite to how beta functions

are sometimes defined in quantum field theory, where one parameterises the flow in

terms of energy rather than length.)

Before we jump straight in, it’s useful to take a step backwards and build up the

beta functions. Let’s go back to our original scaling analysis around the Gaussian fixed

point (3.24), where the running of the couplings is given by gn(s) = e(d�nd/2+n)sg0,n.

The beta functions are

dgn
ds

=

✓
d�

1

2
nd+ n

◆
gn (3.43)

Notice that, at this leading order, there’s no mixing between di↵erent couplings: turning

on one coupling gn does not induce another to flow. As we saw above, this state of

a↵airs no longer holds when we include interactions.

We now focus on the two most important couplings, µ2
0 and g0. At order g0, the RG

equations are given by (3.31); the additional correction at order g20, given in (3.40),

means that these get replaced by

µ2(⇣) = ⇣2
�
µ2
0 + ag0

�
and g(⇣) = ⇣4�d(g0 � bg20) (3.44)
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where

a = 12

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

q2 + µ2
0

and b = 36

Z ⇤

⇤/⇣

ddq

(2⇡)d
1

(q2 + µ2
0)

2

Note that we have kept our original scaling dimensions in (3.44); the corrections in

scaling due to the diagram (3.42) will be subleading and not needed in what follows.

When we di↵erentiate µ2(⇣) and g(⇣) to derive the beta functions, we will get two

terms: the first is (3.43) and comes from the scaling; the second comes from the cor-

rections, given by the integrals a and b. Di↵erentiating these integrals is particularly

easy. For small s, we we write

Z ⇤

⇤e�s

dq f(q) ⇡ [⇤� ⇤e�s]f(⇤) ⇡ ⇤f(⇤)s )
d

ds

Z ⇤

⇤e�s

dq f(q) = ⇤f(⇤)

Let’s restrict to d = 4 dimensions. The beta function equations are

dµ2

ds
= 2µ2 +

3g

2⇡2

⇤4

⇤2 + µ2
and

dg

ds
= �

9

2⇡2

⇤4

(⇤2 + µ2)2
g2 (3.45)

These don’t (yet) contain any new physics, but it’s worth reiterating what information

we can extract from these equations.

First, the beta function for µ2 has two terms; the first term comes from the second

and third steps in RG (scaling), while the second comes from the first step in RG

(integrating out). Meanwhile, the beta function for g has only a single term. There

is no term linear in g because it was marginal under scaling, but it does receive a

contribution when we integrate out the high momentum modes at order g2. This

contribution is negative, which tells us the coupling is marginally irrelevant. (A repeat

of the warning above: this is the opposite convention to quantum field theory where one

flows in decreasing energy, rather than increasing length, which means that a marginally

irrelevant interaction is usually said to have a positive beta function. )

3.4.5 Again, the Analogy with Quantum Field Theory

The calculations above are very similar to the kind of loop integrals that you do in

quantum field theory in d = 3+ 1 dimensions. There are, however, some philosophical

di↵erences between the approaches.
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In statistical mechanics, the field �(x) is, by construction, a coarse grained object:

at the microscopic level, it dissolves into constituent parts, whether spins or atoms or

something else. This has the practical advantage that we have no expectation that

the statistical field theory will describe physics on arbitrarily short distance scales.

In contrast, when we talk about quantum field theory in the context of high energy

physics, it is tempting to think of the fields as “fundamental”, a basic building block

of our Universe. We may then wish for the theory to make sense down to arbitrarily

small distance scales.

This ambition leads to a subtly di↵erent viewpoint on renormalisation. In quantum

field theory one must introduce a cut-o↵, as we have above, to render integrals finite.

However, this cut-o↵ is very often viewed as an artefact, one which we would ultimately

like to get rid of and make sense of the theory as ⇤ ! 1. The trouble is that the

renormalised quantities – things that we’ve called µ2 and g – typically depend on this

cut-o↵. We saw this, for example, in (3.44). Often this makes it tricky to take the limit

⇤ ! 1.

To avoid this problem, one makes the so-called bare couplings – things we’ve called

µ2
0 and g0 – depend on ⇤. This is not such a dumb thing to do; after all, these quantities

were defined at the cut-o↵ scale ⇤. The original game of renormalisation was to find a

way to pick µ2
0(⇤) and g0(⇤) such that all physical quantities remain finite as ⇤ ! 1.

It is by no means obvious that this is possible. Theories which can be rendered finite

in this way are said to be renormalisable.

The high-energy approach to renormalisation predates the statistical physics ap-

proach and is now considered rather old-fashioned. The idea that a theory needs to

make sense up to arbitrarily high energy scales smacks of hubris. The right way to view

renormalisation – whether in statistical mechanics or in high energy physics – is through

the renormalisation group procedure that has been our main focus in this chapter, in

which one integrates out short wavelength modes to leave an e↵ective long-distance

theory.

Nonetheless, the high-energy approach to renormalisation has its advantages. Once

one goes beyond the calculations described above, things are substantially easier with

a high-energy viewpoint. You will learn more about these issues in the lectures on

Advanced Quantum Field Theory.

3.5 The Epsilon Expansion

We have learned that �4 interaction is irrelevant for d � 4 and relevant for d < 4,
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sweeping us away from the Gaussian fixed point. But we seem to be no closer to

figuring out where we end up. All we know is that we’re not in Kansas anymore.

The di�culty is that we’re limited in what we can calculate. We can’t do the path

integral exactly in the presence of �4 interactions, and are forced to work perturbatively

in the coupling g. Yet, as we have seen, in dimension d < 4 the RG flow increases g,

taking us to a regime where perturbation theory is no longer valid.

β(g)

g

Figure 29: The beta function for g when d < 4. The arrows show the flow of g as we move

towards the infra-red. The fixed point lies within the regime of perturbation theory when

d = 4� ✏.

Nonetheless, the calculations that we did above do contain information about where

we might expect to end up. But to see it, we have to do something rather dramatic.

We will consider our theories not in d = 4 dimensions, but in

d = 4� ✏

dimensions where ✏ is a small number, much less than 1. Clearly, this is an odd thing to

do. You could view it as an act of wild creativity or, one of utter desperation. Probably

it is a little bit of both. But, as we shall see, it will give us the insight we need to

understand critical phenomena.

First, we should ask whether it makes sense to work in a non-integer dimension.

The lattice models that we started with surely need to be defined in dimension d 2 Z+.

Similarly, it was important for us that the free energy is local, meaning that it is written

as an integral over space, and this too requires d 2 Z+. However, by the time we get

to the beta function equations, it makes mathematical, if not physical, sense to relax

this and work in arbitrary d 2 R. We can read o↵ these beta functions from the RG
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equations (3.44): they are

dµ2

ds
= 2µ2 +

12⌦d�1

(2⇡)d
⇤4

⇤2 + µ2
g̃ + . . .

dg̃

ds
= ✏g̃ �

36⌦d�1

(2⇡)d
⇤4

(⇤2 + µ2)2
g̃2 + . . .

where ⌦d�1 is the area of the sphere Sd�1. We’ve introduced the dimensionless coupling

g̃ = ⇤�✏g. Note that the beta function for g̃ now includes a term linear in g̃ arising

from the scaling.

It can be checked that the two-loop diagrams we neglected contribute only at order

✏2. This means that it’s consistent to truncate to the beta functions above. We could

use the general formula for the area of a sphere, ⌦d�1 = 2⇡d/2/�(d/2), but this will give

corrections of order ✏2, so instead we simply use ⌦3 = 2⇡2. Similar comments apply to

(2⇡)d. We’re left with

dµ2

ds
⇡ 2µ2 +

3

2⇡2

⇤4

⇤2 + µ2
g̃

dg̃

ds
⇡ ✏g̃ �

9

2⇡2

⇤4

(⇤2 + µ2)2
g̃2

The novelty of these beta functions is that they have two fixed points. There is the

Gaussian fixed point µ2 = g̃ = 0 that we discussed before. And there is a new fixed

point,

µ2
? = �

3

4⇡2

⇤4

⇤2 + µ2
?

g̃? and g̃? =
2⇡2

9

(⇤2 + µ2
?)

2

⇤4
✏

Since we’re working to leading order in ✏, the solution is

µ2
? = �

3

4⇡2
⇤2g̃? = �

1

6
⇤2✏ and g̃? =

2⇡2

9
✏

This is the Wilson-Fisher fixed point. Importantly, when ✏ is small then the fixed

point g̃? is also small, so our calculation is self-consistent (although, since we are in a

fractional dimension, arguably unphysical!).

3.5.1 The Wilson-Fisher Fixed Point

To understand the flows in the vicinity of the new fixed point, we write µ2 = µ2
? + �µ2

and g̃ = g̃? + �g̃. Linearising the beta functions, we find

d

ds

 
�µ2

�g̃

!
=

 
2� ✏/3 3

2⇡2⇤2
�
1 + ✏

6

�

0 �✏

! 
�µ2

�g̃

!
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where, as with all our other calculations, the entries in the matrix hold only up to

O(✏2).

The eigenvalues of a triangular matrix coincide with the
µ2

g

WF

d=4−ε

Figure 30:

diagonal entries. We see that this fixed point has one positive

and one negative eigenvalue,

�t = 2�
✏

3
+O(✏2) and �g = �✏+O(✏2)

In other words, the Wilson-Fisher fixed point has one relevant

direction and one irrelevant. The flows are shown in the figure.

We see that the epsilon expansion provides us with a global

picture of the RG flows in d < 4 dimensions. One can check

that all other couplings are also irrelevant at the Wilson-Fisher fixed point. Crucially,

the fixed point sits at small g where our perturbative analysis is valid.

Now suppose that we increase ✏. The Wilson-Fisher fixed point moves to higher g,

and our perturbative approach breaks down. Nonetheless, it is not unreasonable to

suppose that the qualitative picture of the flows remains the same. Indeed, this is

thought to happen. Because the Wilson-Fisher fixed point has just a single relevant

operator, it means that we will generically end up there if we we’re willing to tune just

a single parameter, namely T ! Tc.

It is now a simple matter to compute the critical exponents in the epsilon expansion.

Recall from Section 3.2 that these are related to the scaling dimensions of various

terms. The relevant direction away from the Wilson-Fisher fixed point is temperature,

t = |T � Tc|/Tc. Its dimension is determined by the way it scales as we approach the

critical point, t ! ⇣�tt = es�tt. But this is precisely the eigenvalue �t that we just

computed.

The critical exponent ⌫, defined by ⇠ ⇠ t�⌫ , is then given by (3.12)

⌫ =
1

�t
=

1

2
+

✏

12
+O(✏2)

We can then use the hyperscaling relation ↵ = 2� d⌫, given in (3.13), to compute the

critical exponent for the heat capacity

c ⇠ t�↵ with ↵ =
✏

6
+O(✏2)

– 91 –



To compute the other critical exponents, we need to evaluate the anomalous dimension

⌘. As we mentioned briefly above, this is related to the diagram and turns

out to be ⌘ = ✏2/6, which is higher order in the expansion. We then have, from (3.10),

�� ⇡
d� 2

2
= 1�

✏

2

Equations (3.14), (3.15) and (3.16) then give

� ⇡
1

2
�

✏

6
, � ⇡ 1 +

✏

6
, � ⇡ 3 + ✏

where all expressions hold up to corrections of order O(✏2).

Of course, our real interest lies in the system at d = 3, or ✏ = 1. It would be in poor

taste to simply plug in ✏ = 1. But I know that you’re curious. Here’s what we get:

↵ � � � ⌘ ⌫

MF 0 1
2 1 3 0 1

2

✏ = 1 0.17 0.33 1.17 4 0 0.58

d = 3 0.1101 0.3264 1.2371 4.7898 0.0363 0.6300

Our answers are embarrassingly close to the correct values given the dishonest method

we used to get there. One can, however, make this approach more respectable. The ✏

expansion has been carried out to order O(✏5). It is not a convergent series. Nonethe-

less, sophisticated resummation techniques can be used to make sense of it, and the

resulting expressions give a fairly accurate account of the critical exponents.

The real power of the epsilon expansion, however, is more qualitative than quan-

titative; it usually – but not always – gives a reliable view of the structure of RG

flows.

3.5.2 What Happens in d = 2?

We have not yet discussed much about what happens in d = 2 dimensions. Here the

story is somewhat richer. The first hint of this can be seen in a simple analysis of the

Gaussian fixed point, which shows that

�� = [�] = 0

This means that the Gaussian fixed point has an infinite number of relevant deforma-

tions since �n, for each n, is relevant.
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It turns out that, in contrast to d = 3, there are actually an infinite number of

fixed points in d = 2. Roughly speaking, the nth fixed point can be reached from the

Gaussian fixed point by turning on

F [�] =

Z
d2x

1

2
(r�)2 + g2(n+1)�

2(n+1)

Of course, as we’ve seen above, the RG flow is not quite so simple. When we turn on

the coupling g2(n+1)�2(n+1) we will generate all other terms, including �2 and �4 and

so on. To reach the nth fixed point, we should tune all such terms to zero as we flow

towards the infra-red.

One can show that the nth fixed point has n relevant operators: schematically, these

can be thought of as �2,�4, . . . ,�2n although, as above, there will be mixing between

these. By turning on the least relevant operator, one can flow from the nth fixed point

to the (n� 1)th fixed point.

The results above are not derived using the ✏ = 4�d expansion which, unsurprisingly,

is not much use in d = 2. Instead, they rely on something new which we will briefly

describe in Section 3.6.

3.5.3 A History of Renormalisation

“After about a month of work [at General Atomic Corp] I was ordered to

write up my results, as a result of which I swore to myself that I would

choose a subject for research where it would take at least five years before

I had anything worth writing about. Elementary particle theory seemed to

o↵er the best prospects of meeting this criterion.”

Kenneth Wilson

Renormalisation first entered physics in the context of quantum field theory, with

the need to make sense of the UV divergences that arise in quantum electrodynamics.

The theory, developed by Schwinger, Feynman, Tomonaga, Dyson and others, amounts

to finding a consistent way to subtract one infinity from another, leaving behind a finite

answer. This method yields excellent agreement with experiment but is, in the words

of Feynman, a “dippy process”, in which the infinities are not so much understood as

swept under a very large rug.
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The first hint of something deeper – and the first hint of a (semi)-group action – was

seen in the work of Gell-Mann and Low in 1954. They realised that one could define

an e↵ective charge of the electron, e(µ) where µ denotes the energy scale at which the

experiment takes place. This interpolates between the physical charge, as µ ! 0, and

the so called bare charge at high energies.

Meanwhile, throughout the 50s and 60s, a rather di↵erent community of physicists

were struggling to understand second order phase transitions. It had long been known

that Landau theory fails at critical points, but it was far from clear how to make

progress, and the results that we’ve described in this course took several decades to

uncover. In Kings College London, a group led by Cyril Domb stressed the importance

of focussing on critical exponents; at Cornell University, Benjamin Widom showed

that the relationships between critical exponents could be derived by invoking a scale

invariance, albeit with little understanding of where such scale invariance came from;

and at the University of Illinois, Leo Kadano↵ introduced the idea of “blocking” in

lattice models, a real-space renormalisation group in which one worked with successively

coarser lattice models.

While many people contributed to these developments, the big picture, linking ideas

from particle physics, statistical physics and condensed matter physics, is due mostly

to. . .

Kenneth Wilson: 1936-2013

Ken Wilson received his PhD in 1961, working with Murray Gell-Mann on an assort-

ment of topics in particle physics that fed his interest in the renormalisation group. He

went on to spend much of the 1960s confused, scrabbling to understand the physics of

scale, first in quantum field theory and later in the context of critical phenomena. He

wrote very few papers in this time, but his reputation was strong enough to land him

postdocs at Harvard and CERN and later even tenure at Cornell. (Some career advice

for students: the strategy of being a genius and not writing anything rarely leads to

such success.)

The floodgates opened in 1971 when Wilson set out his grand vision of the renormal-

isation group and, with his colleague Michael Fisher, suggested the epsilon expansion

as a perturbative method to compute critical exponents in a paper charmingly titled

“Critical Exponents in 3.99 Dimensions”. Wilson used these methods to solve the

“Kondo problem” in which an isolated spin, sitting in a bath of mobile electrons, ex-

hibits asymptotic freedom, and he was among the first to understand the importance

of numerical approaches to solve statistical and quantum field theories, pioneering the
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subject of lattice gauge theory. In 1982 he was awarded the Nobel prize for his contri-

butions to critical phenomena.

3.6 Looking Forwards: Conformal Symmetry

There are many questions that we have not yet answered? How do we know the critical

exponents in d = 2 exactly? How do we know that there are an infinite number of fixed

points in d = 2? Why are the critical exponents in d = 2 rational numbers while, in

d = 3 they have no known closed form? How are we able to compute the d = 3 critical

exponents to 5 significant figures?

The answers to all these questions can be found in the emergence of a rich math-

ematical structure at the critical point. As we’ve seen throughout these lectures, the

basic story of RG ensures that physics at the critical point is invariant under scale

transformations

x ! �x (3.46)

More surprising is the fact that the physics is invariant under a larger class of sym-

metries, known as conformal transformations. These transformation consist of any

map

x ! x̃(x) such that
@x̃i

@xk

@x̃j

@xl
�ij = �(x)�kl (3.47)

for some function �(x). Such conformal transformations have the property that they

preserve angles between lines.

The equation (3.47) has obvious solutions, such as translations and rotations, for

which �(x) = 1. Furthermore, it is simple to see that the scaling (3.46) falls into the

class of conformal transformations, with �(x) = �2. However, it turns out that there is

one further, less intuitive transformation that obeys this condition. This is known as

the special conformal transformation and is given by

x0i =
xi

� (x · x)ai

1� 2(x · a) + (a · a)(x · x)
(3.48)

parameterised by an arbitrary vector a.

The first question that we should ask is: why are theories at the fixed points invariant

under the larger group of conformal transformations, rather than just scale transforma-

tions? The answer to this, which goes somewhat beyond this course, involves a deeper

understanding of the nature of the RG flows and hinges, crucially, on being able to
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construct a quantity which decreases monotonically along the flow. This quantity is,

unhelpfully, called c in d = 2 dimensions, f in d = 3 dimensions and a in d = 4 di-

mensions, and the fact that it decreases monotonically is referred to as the c-theorem,

f -theorem and a-theorem respectively. Using this machinery, it is then possible to

prove that scale invariance implies conformal invariance. (The proof is more clearcut

in d = 2; it relies on some extra assumptions in higher d, and there is a general feeling

that there is more to understand here.)

The existence of an extra symmetry (3.48) brings a newfound power to the study

of fixed points. The d translational symmetries, 1
2d(d � 1) rotational symmetries, d

special conformal symmetries and single scale transformation combine to form the

conformal group, which can be shown to be isomorphic to SO(d+1, 1). All fields and,

in particular, all correlation functions must fall into representations of this group, a fact

which restricts their form. In recent years, our understanding of these representations

has allowed new precision in the computation of critical exponents in d = 3 dimensions.

This programme goes by the name of the conformal bootstrap.

Conformal Symmetry in d = 2

In d = 2 dimensions, conformal symmetry turns out to be particularly powerful. The

group of finite conformal transformations follows the pattern in higher dimensions, and

is SO(3, 1) ⇠= SL(2,C). However, something rather special happens if you look at in-

finitesimal transformations where one finds that many many more are allowed. In fact,

there are an infinite number. This means that there is a powerful, infinite dimensional

algebra, known as the Virasoro algebra, underlying conformal theories in d = 2 dimen-

sions. This places much stronger constraints on these fixed points, ultimately rendering

many of them solvable without resorting to perturbation theory. This is the reason why

the critical exponents are rational numbers which can be computed exactly. This is

also what allows us to understand the structure of the infinite number of multi-critical

fixed points described in Section 3.5.2.

Conformal field theory in d = 2 dimensions is a vast subject which arises in many

di↵erent areas of physics. Although originally developed to understand critical phe-

nomena, it also plays an important role in the lectures on the Quantum Hall E↵ect and

the lectures on String Theory, where you can find an introduction to the basics of the

subject.
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