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and universality, forms the subject matter of Chapter 7.

6.1 Ising Model in Two Dimensions

In a landmark paper, Onsager [222] exactly calculated the free energy of the
two-dimensional ferromagnetic Ising model in zero magnetic field on the rectan-
gular lattice. This calculation provided the first exact solution of a model that
displays a phase transition. Onsager’s original derivation is mathematically
complex. Since his original paper, a number of more transparent solutions
of the problem have appeared. Below, we present a brief account of one of
these, namely that of Schultz et al. [270]. Our motivation for including this
calculation is twofold. Most of this book is concerned with approximation
techniques, but we feel that it is worthwhile to exhibit an exact calculation in
statistical physics as a counterpoint to the examples of mean field theory and
approximate renormalization group calculations. Second, we frequently quote
the exact results of Onsager for the specific heat and order parameter and
feel that some readers may not feel comfortable with these results without the
evidence of a derivation. Those readers not interested in the technical details
may skip ahead to Section 6.1.4.

6.1.1 Transfer matrix

We have already solved the one-dimensional Ising model in Section 3.6 by use of
the transfer matrix approach and will also apply this method in two dimensions.
We first formulate the one-dimensional problem in a slightly different way.
Consider, again, the Hamiltonian

N
H = —JZCTZ'G‘,'+1 = hZO’i . (61)
i=1 i
The partition function is
7 = Z (eﬁhﬁleKﬂlﬂ'z) (eﬂhdzeKcrzog) L (eﬁhUNeKUNU1) (62)
{e}

where we have grouped the factors somewhat differently from (3.36) and where
K =3J.
We now introduce two orthonormal basis states | 4+ 1) and | — 1) and Pauli
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operators, which in this basis have the representation

(1o (01 (oo
s (0 _1) U+_(o o) 0_(1 0) 165

with ox = 0% + 07 and oy = —i(6+ — 6~). It is now easy to see that the

Boltzmann weight exp{8ho;} can be expressed as a diagonal matrix, V;, in
this basis:

(+1|Vi] +1) = €, (~1|Vy| = 1) = ¢ B"
or
Vi = exp{Bhoz} . (6.4)

Similarly, we define the operator V2 corresponding to the nearest-neighbor
coupling by its matrix elements in this basis:

(1 V2| +1) = (-1 V| - 1) = ¥

(+1[Va] = 1) = (-1[Va| +1) =7 .
Therefore,
Ve=eX14eHox = A(K)exp{K*ox} (6.5)
where in the second step we ha;'e used the fact that (0 x)*" = 1. The constants

A(K) and K™ are determined from the equations

AcoshK* = ¥
AsinhK* = K (6.6)

or tanh K* = exp {-2K}, A = /25inh 2K. Using these results, we write the
partition function as follows:

Z = > (malValu)pal Valus) (sl Vilpa) - - (an [ Valu)
{p=+1,-1}
= T(ViVo)" = Ti(Vy 2V V)N = AV ol (6.7)

where X\; and \; are the two eigenvalues of the Hermitian operator
V = (V;*ViV}/?) = V2sinh 2K K 7x/2¢Bhos K ox /2 (6.8)

In arriving at this symmetric form of the transfer matrix V we bave used the
invariance of the trace of a product of matrices under a cyclic permutation
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Figure 6.1: M x M square lattice with periodic boundary conditions.

of the factors. Clearly, in the case h = 0, the two eigenvalues are given by
= Aexp {K*}, A2 = Aexp {— K"} and we recover our previous result (3.37).
We note, in passing, that in this procedure a one-dimensional problem
in classical statistics has been transformed into a zero-dimensional (only one
“site” ) quantum-mechanical ground-state problem (largest eigenvalue). This
result is quite general. There exists a correspondence between the ground state
of quantum Hamiltonians in d — 1 dimensions and classical partition functions
in d dimensions which can sometimes be exploited, for example in numerical
simulations of quantum-statistical models [296], [297].
We now generalize this procedure to the two-dimensional Ising model and
consider an M x M square lattice with periodic boundary conditions (see Figure
6.1) and the Hamiltonian

H= 7JZUT,CO'?‘+1,C - Jzar,cﬂ'r,c+l (69)

rc r.c

where the label r refers to rows, c to columns, and o, {p,c = Or et = Tre.
The first term in (6.9) contains only interactions in column c and is, in this
sense, analogous to the magnetic field term in (6.1). The second term in (6.9)
is the coupling between neighboring columns and will lead to a non-diagonal
factor in the complete transfer matrix.
In analogy with the one-dimensional case, we now introduce the 2™ basis
states

) = |een, gy ooy pong) = (a2 - - Jpnr) (6.10)

——*
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with ; = +1 and M sets of Pauli operators (0jx,05v,0;z) which act on the
Jth state in the product (6.10), that is,

05z B, M2y s M) = lrs b2y o iy ony pine)
+

g, |#1:#2>--'le'“)f-"M> :(511.,',—1 I#lv“Z,---#j'l'zv"'wu'M)
Jj_ l/-‘l)f-"'Qa"‘f"‘j:-"!f-“M> :6uj,1 |F‘1a”27"'”j_2:"-1#M> >
(6.11)
Moreover, we impose the commutation relations [0jaromg] = O for j # m. For
7 = m the usual Pauli matrix commutation relations apply.

If we think of the index u; as the orientation of the ith spin in a given
column, we see immediately that the Boltzmann factors exp {KY, 0rc0rt1,c}
are given by the matrix elements of the operator V; = exp {K 20 9i20541,2}-
Similarly, the matrix element

M
{eHVel{W'Y) = (s pnrv,y oy H (eK14+e K

= exp{(M -2n)K} (6.12)

G'jX) ““"i’p',Z?' .. :#i’\l)

where n of the indices {u'} differ from the corresponding entries in {u}. Thus
the partition function of the two-dimensional Ising model, in zero magnetic
field, is, as can easily be verified, given by

zZ = > (1| Vilpz)(p2 Ve pa) (us| Vilpa) -+ {par|Va )
{“1}1{“2}1"'!{#1\4}
= Te(ViVa) = To(ViAV, Vi (6.13)

In (6.13) the sum over each {u;} is, of course, over the entire set of 2M basis
states. Using (6.5) and (6.6), we may write

M
Va2 = (2sinh2K)M/ % exp § K* Y " 0;x (6.14)
i=1

and we have reduced the calculation of the partition function to the determi-
nation of the largest eigenvalue of the Hermitian operator

vV = v, vvy/?

(2sinh 2K)M/2 exp

B o
5 2L
j=1
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M oM
xexpd K Z 0jz05+1,7 [ €XP | 5~ Z oix (6.15)
i=1 =

which is still a nontrivial task since the factors in (6.15) do not commute
with each other and, since the matrix V becomes infinite dimensional in the
thermodynamic limit.

6.1.2 Transformation to an interacting fermion problem

It is convenient for what follows to perform a rotation of the spin operators
and to let oz = —0ojx, 0jx —+ oz for all j. These rotations, of course, leave
the eigenvalues invariant. Using 0,7 = 20}‘0; —1and g;x = 0;-” +o;, we
arrive at the forms

M
Vi = exp{ KD (of +07) (o} +05)
=1
M 1
V, = (2sinh2K)M/2exp 2K*Z(a;o;—§1) . (6.16)
j=1

Schultz et al. [270] showed that these operators can be simplified by a series
of transformations. The first of these is the Jordan-Wigner transformation
which converts the Pauli operators to fermion operators (see the Appendix
for a discussion of second quantization). This step is useful because of subse-
quent canonical transformations that are not possible for angular momentum
operators. One writes

j—1
o;' = exp {m' Z c};cm} c;
m=1 }l
j—1 j-1
g; = cjexp {——m’ Z cfncm} = exp {m’ Z clncm} c;  (6.17)

m=1 m=1

(=

where the operators ¢, ¢! obey the commutation relations
leisielal+ =agchs ohig; = o

ey eml+ = [ch el = 0.
The operator cf,c, is the fermion number operator for site m with integer
eigenvalues 0 and 1. Since €™ = =" the last step of (6.17) follows. To see
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that the spin commutation relations are preserved under this transformation
consider, for n > j,

n—1

= . icte. ictes
(o] ,or] =exp { mi Z clem (c;,'em“i"-"c;’1 - cLe”cjcfc_,,-) :
m=j+1
Noting that exp {m’c}cj} ¢; = c¢;j and c;j exp {TT'A‘:C}CJ'} = —c;, wehave [0} ,0}] =

0 for n # j. We also immediately see that the on-site anticommutator

(070714 = [esnclle = 1.

The verification of further commutation relations and the derivation of the
inverse of the transformation (6.17) is left as an exercise. Using (6.17), we
can express the operators Vi, and V; in terms of the fermion operators. The
operator V presents no difficulties and is immediately given by

M
V, = (2sinh 2K)M/2 exp { 2K* Z (C;Cj = %) ; (6.18)

Jj=1

In the case of Vi, there is a slight difficulty due to the periodic boundary
conditions. We first note that for j # M the term

+ oV (ot -
(0 +o7)of +o7p) = c;r-c;+1 + C}CJ‘+1 + C;+1Cj F O

For the specific case j = M,

M-1
(ch +op)of +o7) = expdmi C;Cj CR{(CI +¢1)

i=1

M-1
+exp { 7 C}CJ‘ emlc! +e1)

J=1

2 t

= exp{ mi Z c;rcj [e”‘CMCM (cT + cM)(cI + cl)]
i=1

where n = j C;Cj is the total fermion number operator. The operator n
commutes with V3 but not with V;. On the other hand, (—1)” commutes
with both V;, and V; as the various terms in V; change the total fermion
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number by 0 or £2. Thus if we consider separately the subspaces of even and
odd total number of fermions, we may write V; in a simple universal way, that
is,

M
Vi = exp KZ(C; - cj)(cj-le +cjy1) (6.19)
j=1
where
cMi1 = —c1, cj,rwﬂ = —cJ{ for n even (6.20)
CM+1 = C1, CTMT+1 = ci for n odd .

With this choice of boundary condition on the fermion creation and annihila-
tion operators, we have recovered translational invariance and now carry out
the canonicael transformation

1 M
Gy = —— E cie i
¢ VM
1 XM
T _ t igj
al = c.e 6.21
4 \/MJ;1 1 Lt
with inverse
1 .
c; = — E a,e*?
¢ VM £ ~
- 1 to—igj
c; = — ale : 6.22
3 /M Xq: q (‘ )

To reproduce the boundary conditions (6.20), we take ¢ = jn /M with

j=:t1,:t3,...,:|:(M—1) for n even
j=0,£2,+4,...,£(M - 2),M forn odd

and where we have also assumed, without loss of generality, that M is even. It is
easy to see that the operators ag, a; obey fermion commutation relations, that
is, [aq, a;,]+ = 84,¢ and [ag, ap ]y = [al, az,]+ =0 for all ¢ and ¢'. Substituting
into (6.18) and (6.19), we find for n even,

Vo = (2sinh2K)M/2exp {ZK* Z(agaq + aT_qa_q — 1)}
q>0
= (2sinh2K)M/2 J] Vo (6.23)
g>0
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and

Vi, = exp {2K Z[cos q(a;f,aq + aT_qa_q) — isin q(a;aT_q + aqa_q)]}
q>0

= ] Vi (6.24)

q>0

where, in (6.23) and (6.24), we have combined the terms corresponding to ¢ and
—g, and recognized in writing the resulting operators as products, that bilinear
operators with different wave vectors commute. This is a great simplification
since the eigenvalues of the transfer matrix can now be written as a product of
eigenvalues of, as we shall see, at most 4 x 4 matrices. For the case of odd n
we also need the operators Vi, and V, for ¢ = m and ¢ = 0. These are given
by

Vio = exp {2Kaf]a0} Voo = exp {QK*(agag - %)}

(6.25)
Vi =exp{-2Kala,} Vo =exp{2K*(ala, 1)}

which are already in diagonal form and, of course, commute with each other.

6.1.3 Calculation of eigenvalues

We proceed to calculate the eigenvalues of the operator
1/2 1/2
V= Vzé quvzé

for ¢ # 0 and g # w. Since we are dealing with fermions, we have only four

_ possible states: [0), a}|0), a’ |0), and a}al |0}, where |0) is the zero particle

state defined by a4|0) = a_,4|0) = 0. These states are already eigenstates of
V3, and since the operator V; has nonzero off-diagonal matrix elements only
between states that differ by two in fermion number, the problem reduces to

finding the eigenvalues of V, in the basis |0) and |2) = aga,f_ ¢10). We note that

qualqle) =exp {2K cosq} alq|0) (6.26)

and 1/
Vi) = e {-K*}0) 6
Vi [2) =exp{K*}[2).

To obtain the matrix elements of Vy, in the basis |0), |2}, we let

V1,|0) = a(K)|0) + B(K)|2) .
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Differentiating this expression with respect to K, we obtain

do dg
d—K|0) + d—K|2) 2 [cosq {agaq + at_qa,q}

—1sing {a;af_q + aqa,q}] {a|0}+5|2)}

= 2if8sing|0) + [40 cos g — 2iasin g]|2) (6.28)
or
da ; :
ri-d 2iB(K)sing
g—% = 48(K)cosq — 2ia(K)sing . (6.29)

We solve these equations subject to the boundary conditions a(0) = 1, 5(0) =
0. The result is
(0[V14]0) = a(K) = e2X 5 9(cosh 2K — sinh 2K cosq)

(6.30)
(2|V14]|0) = B(K) = —ie* <39 5inh 2K sing .

By the same method we can find the matrix elements (2| V14|2) and (0| V1,]2) =
(2|V14/0)* and obtain the matrix

Vi, = 62K eosa cosh 2K — sinh 2K cosgq isinh 2K sing ' (6.31)
—i8inh 2K sing cosh 2K + sinh 2K cosg
and
exp{—-K~ 0 exp{—K* 0
v, = p{-K"} v p{-K"} |- 632
0 exp{K*} 0 exp {K*}

The eigenvalues of this matrix are easily determined. Since we wish, eventually,
to take the logarithm of the largest eigenvalue of the complete transfer matrix
in order to calculate the free energy, we write the eigenvalues in the form

AF =exp {2K cosg = ¢(q)} (6.33)
and after a bit of algebra, we obtain the equation
coshe(q) = cosh 2K cosh 2K™ + cos ¢sinh 2K sinh 2K (6.34)

for €(g). By convention we choose e(g) > 0. We see that the minimum of the
right-hand side of (6.34) occurs as ¢ — 7 and that, for all g,

€(q) > emin = lim e(g) = 2| K — K| (6.35)
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and also note that
lime(q) = 2(K + K™*) . (6.36)

q—0
We are now in a position to combine all this information. Consider first
the subspace in which all states contain an even number of fermions. In this
case the allowed wave vectors do not include ¢ = 0 or ¢ = 7, and comparing
(6.33) and (6.26), we see that the largest eigenvalue of V, for each ¢ is AT
Thus the largest eigenvalue in this subspace, A., is given by

Ae = @sinh2K)MPT[N |
750 K

= (2sinh 2K)M/2 exp {Z[%)Sq + E(Q’)]}

q>0

= (2sinh2K)M/2 exp {; Z e(q)} (6.37)

a

where, in the last step, we have used Eq cosg = 0 and have also extended the
summation over the entire range —m < g < 7.

The other subspace must be examined more carefully. For ¢ Z0 and g # =
the maximum possible eigenvalue is )\j. The corresponding eigenstates are
all states with (—1)" = —1. To make the overall state have (—1)" = -1,
we occupy the ¢ = 0 state and leave the ¢ = 7 state empty and obtain a
contribution of (2sinh2K)M/2exp {2K} to the eigenvalue A,. Therefore the
largest eigenvalue in the odd subspace is

1
Ao = (25inh 2K)M/% exp { 2K + = > elg)p - (6.38)
g#0,m
Since the wave vectors in the two subspaces are not identical, a direct compar-

ison between the two largest eigenvalues is somewhat complicated. However,
we note that

1 3 1 * - * *

glime(q) + 5 lime(g) = |K - K"+ (K +K")
= 2K forK > K~*
= 2K* forK* > K .

Thus if K > K*, it is quite plausible, and can be shown rigorously in the
thermodynamic limit M — oo, that A, and A, are degenerate. A little reflec-
tion will convince the reader that unless such a degeneracy exists, the order
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parameter mo(T') will be strictly zero. Therefore, the critical temperature of
the two-dimensional Ising model is given by the equation K = K™, or using
the identity [from (6.6)]

sinh 2K sinh2K™ =1 (6.39)

by the more usual expression

2J

= 40
T, L (6.40)

sinh

or kgT./J = 2.269185....

The degeneracy of the two largest eigenvalues of the transfer matrix con-
tributes only an additive term of In2 to the dimensionless free energy and is
thus negligible. Therefore, at any temperature the free energy is given by

pG(0,T)
M2

Bg(0,T) = -% In(2sinh 2K) — ﬁ > elq)
q

1 ™
——~1In(2sinh 2K) — e ! dge(q) (6.41)
2 4r

-

where we have converted the sum over wave vectors to an integral.

6.1.4 Thermodynamic functions

With a bit more algebra, we can simplify the expression (6.41) for the zero-field
free energy. Using (6.39) and cosh2K* = coth 2K, which follows from (6.6),
we have

cosh{e(g)} = cosh2K coth2K + cosq . (6.42)
Consider, now, the function
1 2r
f(z) = ﬂ/ d¢In(2coshx + 2 cos @) . (6.43)
0

Differentiating with respect to z and evaluating the resulting integral by con-
tour integration, we find

df(z}
dr

Taking z = ¢(g) we obtain the integral representation:

=sign(z) or f(z)=|z|. (6.44)

e(q) = %fo d¢In(2 cosh 2K coth 2K + 2cosq + 2cos @) . (6.45)
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We define

1 m
—%fo dge(q) =

Using the trigonometric identity

1 ™ m™
2—2/ dq/ d¢In[2 cosh 2K coth 2K
™ Jo 0
+2cosg+2cos¢] . (6.46)

cosg + cos ¢ = 2 cos g+¢ cos ; ¢
and changing variables of integration to
-9 g+¢
w; = —— =
1 2 w2 2

we have
1 'n /2
= = fo dwa f dwy In[2 cosh 2K coth 2K + 4cosw; cosws] . (6.47)
0

The integration over w; is almost in the form (6.43) and we can put it into
this form by writing

1
E = F dwzf dw In(2 coswy)
+_/‘ dwlf duy In (cosh 2K coth2K +2c0sw2)
COS Wy

1 rr/2
= — f dw; In(2 cosw, )
mJo

+_
T

But cosh™ & = In[z + /22 — 1] and hence

1 1 [ 1+\/1—q2(K)sin29
=5 In(2 cosh 2K coth2K) + — / dfIn (6.49)
m™Jo

1 7r/2
/; G cosh 2K coth 2K (6.48)

2 cosuwn

2
where 5 il
sinh 2K
K)y=——. .
1B = ook (6.50)
Substituting in (6.41), we finally arrive at the form
1 [7/2 V1-¢%sin? 8
B9(0,T) = — In(2 cosh 2K) — ~ / Wk L o (651)
T Jo




196 Chapter 6. Critical Phenomena [

Figure 6.2: The function ¢(K) defined in (6.50).

for the free energy per spin.

The function ¢(K), defined in (6.50), has the form shown in Figure 6.2. It
takes on a maximum value, ¢ = 1, at sinh2K = 1, and it is clear that the
integral on the right-hand side of equation (6.51) can only be nonanalytic at
that point since the term inside the square root cannot vanish for ¢ < 1. The
internal energy per spin of the system is given by

u(T) = % [Bg(T)] = —J coth2K [1 + % (2tanh® 2K — 1) K1(q)|  (6.52)
where

w/2
ko= [
0 +/1-¢g2?sin”¢
is the complete elliptic integral of the first kind. As ¢ — 1, the term
(2tanh® 2K — 1) — 0, and the internal energy is continuous at the transi-
tion. The specific heat per spin ¢(T) can be obtained by differentiating once
more with respect to temperature. Some analysis (Problem 6.2) shows that

SeT) = (K coth2K){Ki(a) - F(g)
B

i

—(1 - tanh? 2K) [g + (2tanh? 2K — 1)K1(q)] } (6.53)

Ei(g) = fo " dy/ 1~ g2 sinh? ¢

is the complete elliptic integral of the second kind. Near T, the specific heat
(6.53) is given, approximately, by

1 2/ 27 \?
EC(T) ~ *; (kBTC) ln

where

- %_ + const. (6.54)

[
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The internal energy and specific heat are shown in Figure 6.3.

The difference between the exact specific heat and that obtained in Chapter
3 from mean field and Landau theories is striking. Instead of a discontinuity
in ¢(T'), we find a logarithmic divergence. In modern theories of critical phe-
nomena, the form assumed for the specific heat is

=X

T

(6.55)

Onsager’s result is a special case of this power law behavior. The limiting form
of the function

lim l(X*""—l) =—nX.
a—0 ¢

The formula (6.54) is thus seen to be a special case of the power law singularity
with a = 0.

The calculation of the spontaneous magnetization is a nontrivial extension
of the present derivation and may be found in Schultz et al. [270]. The result
is

mo(T) = —limpo Zg(h,T)
—tanh2 K471/

= [1- Rt T (6.56)

— 0 T>T,. (6.57)

As T — T, from below, the limiting form of the spontaneous magnetization is
given by
Fal T & ([H—T7 =T,

As in mean field theories, the order parameter has a power law singularity at
the critical point but the exponent g = %, not % as obtained from mean field
and Landau theories. The derivation of (6.56) was first published by Yang
[331], but Onsager had previously announced the result at a conference. The
asymptotic form as T — T, of the zero-field susceptibility is also known [198]:

x(0,T) = lim Im(h 1) « o S Y (6.58)
-+

o Oh
The exponent v = ;I: in {6.58) again is to be compared with the classical value
v = 1. It is clear from the exact results described above that the form of the
free energy near a critical point is quite different from that postulated in the
Landau theory.
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Figure 6.3: The internal energy (a) and specific heat (b) of the two-dimensional
Ising model on the square lattice. The dotted curve corresponds to the ap-
proximation (6.54).
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6.1.5 Concluding remarks

The reader who has worked through the details of the preceding subsections
will appreciate the difficulty of calculating even the zero-field free energy ex-
actly. One can easily write down the transfer matrix of the two-dimensional
Ising model in a finite magnetic field and arrive at a generalization of (6.15).
However, the subsequent transformation to fermion operators yields a trans-
fer matrix which is not bilinear in fermion operators and which cannot be
diagonalized, at least by presently known techniques.

Similarly, one can construct the transfer matrix of the three-dimensional
Ising model. In this case the matrix V is of dimension 2% x 2%, where L = M2 if
the lattice is an M x M x M simple cubic lattice. The reader can verify that the
difficulty here is not this increase in the dimensionality of the transfer matrix
but rather that the Jordan-Wigner transformation (6.17) does not produce a
bilinear form in fermion operators.

Since Onsager’s solution appeared, a small number of other two-dimensional
problems have been solved exactly. The reader is referred to the book by Bax-
ter [30] for an account of this work. The exact solution for the Ising model on
a fractal is presented in Section 7.3. Since exact results near the critical point
were so elusive, workers in the field devised various approximate techniques
to probe the critical behavior of strongly interacting systems. We first discuss
the method of series expansions which initially provided the greatest amount
of information on critical behavior.

6.2 Series Expansions

The method of series expansions was first introduced by Opechowski [225] and
has proved to be, with the help of modern computers, a powerful tool for the
study of critical phenomena. To motivate the approach, let us consider first a
simple function f(z) and its power series expansion about z = 0:

0-(-9-EQE) e

n=0

where

(v) _ D +2) - (y+n-1)
n n!

The power series (6.59) converges for |z| < |z.|]. Now suppose that we have
available a certain number of terms in the power series of an unknown function.




