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1 BASIC NOTIONS

1 Basic notions

1.1 Background

Equilibrium Statistical Mechanics is a very well-established branch of theoretical physics.
Together with Quantum Mechanics, they form the basis of Modern Physics. It is based
on probability theory and mathematical statistics on the one hand and Hamiltonian me-
chanics on the other. Its scope is very wide since it is, in principle, applicable to all states
of matter. A nice introduction to the historical development of this theory can be found
in the classical book of Pathria [1].

The goal of equilibrium statistical mechanics is to derive the thermodynamic functions
of state of a macroscopic system from the microscopic laws that determine the behaviour
of its constituents. In particular, it explains the origin of thermodynamic – and intuitive
– concepts like pressure, temperature, heat, etc.

In Table 1 we recall the typical length, time and energy scales appearing in the micro-
scopic (say, atomistic) and macroscopic World.

Micro Macro

dist (ℓ)
Solid Gas

10−10m 10−8m
10−3m

# part (N) 1
Solid Gas

(

10−3

10−10

)d=3

= 1021
(

10−3

10−8

)d=3

= 1015

energy (E) 1 eV 1J ≈ 6 1018eV

time (t)
Solid Gas

~/1eV ≈ 6 10−14 s 10−9 s
1 s

Table 1: Typical length, energy and time scales in the microscopic and macroscopic World.

A reference number is the number of Avogadro, NA = 6.02 1023; it counts the number
of atoms in a mol, i.e. 12gr of 12C, and it yields the order of magnitude of the number of
molecules at a macroscopic level. The ionization energy of the Hydrogen atom is 13.6 eV
and sets the microscopic energy scale in Table 1.

It is clear from the figures in Table 1 that, from a practical point of view, it would be
impossible to solve the equations of motion for each one of the N ≈ NA particles – we
keep the discussion classical, including quantum mechanical effects would not change the
main conclusions to be drawn henceforth – and derive from their solution the macroscopic
behaviour of the system. Moreover, the deterministic equations of motion may present

3



1.1 Background 1 BASIC NOTIONS

a very high sensitivity to the choice of the initial conditions – deterministic chaos – and
thus the precise prediction of the evolution of the ensemble of microscopic constituents
becomes unfeasible even from a more fundamental point of view.

The passage from the microscopic to the macroscopic is then done with the help of
Statistical Methods, Probability Theory and, in particular, the Law of Large Numbers.
It assumes – and it has been very well confirmed – that there are no big changes in the
fundamental Laws of Nature when going through all these orders of magnitude. However, a
number of new and interesting phenomena arise due to the unexpected collective behaviour
of these many degrees of freedom. For example, phase transitions when varying an external
parameter occur; these are not due to a change in the form of the microscopic interactions
but, rather, to the locking of the full system in special configurations.

In the theoretical derivation of phase transitions the necessity to take the infinite
size clearly appears; this is called the thermodynamic limit and corresponds to taking
the number of degrees of freedom, say N , to infinity and the volume, say V , also to
infinity, while keeping the ratio between the two finite, N/V finite. In this limit, extensive
quantities scale with N or V while intensive ones remain finite.

The main features of statistical mechanics are quite independent of the mechanics that
describes the motion of the individual agents (classical or quantum mechanics, relativistic
or not). Its foundations do need though different reasonings in different cases. For the sake
of concreteness in this set of lectures we shall focus on classical non-relativistic systems.

In Table I we mentioned energy scales and length scales typical of atomic physics.
Particle physics involves even shorter length scales and higher energy scales. Particle
physics is studied using field theories (see the Lectures by J-B Fournier). While standard
textbooks in Statistical Mechanics do not use a field theoretical formulation, it is indeed
pretty straightforward to apply Statistical Mechanics notions to field theories – a theory
with ‘infinite’ degrees of freedom, one for each space-point.

Equilibrium statistical mechanics also makes another very important assumption that
we shall explain in more detail below. Namely, that of the equilibration of the macroscopic
system. Some very interesting systems do not match this hypothesis. Still, one would
like to use Probabilistic arguments to characterise the macroscopic behaviour of out of
equilibrium systems as well. This is possible in a number of cases although we will
not discuss them in these Lectures (see the Lectures by D. Mouhanna & F. van Wijland).
Indeed, deriving a theoretical framework to describe the behaviour of macroscopic systems
out of equilibrium is one the present major challenges in theoretical physics.

Analytic solutions of macroscopic systems (be them in equilibrium or not) are limited to
rather simple cases (typically in very low dimension or in the mean-field limit. Numerical
methods, viz. computer simulations, are very useful to treat complex systems. These are
discussed in the Lectures by F. Krzakala.

4



1.2 Elements in statistical mechanics 1 BASIC NOTIONS

1.2 Elements in statistical mechanics

Let us here recall some important features of Statistical Mechanics [4, 5, 6, 7, 8]. A
short account of classical mechanics is given in [9] with special emphasis on integrability
properties that we will investigate in Sec. 3. A specially careful discussion of the passage
from classical mechanics to statistical physics is given in [10, 11].

The state of a classical system with i = 1, . . . , N particles moving in d-dimensional real
space is fully characterised by a point in the 2dN dimensional phase space Γ. The coordi-
nates of phase space are the real space coordinates of the particles, qai , where i is the parti-
cle label and a = 1, . . . , d is the label of the real space coordinates, and the particles’ mo-
menta, pai . It is convenient to represent a point in phase space with a 2dN -dimensional vec-

tor, e.g. ~Y = ( ~Q, ~P ) = (q11, q
2
1, q

3
1,q

1
2, q

2
2, q

3
2,. . . , q

1
N , q

2
N , q

3
N , p

1
1, p

2
1, p

3
1,p

1
2, p

2
2, p

3
2,. . . , p

1
N , p

2
N , p

3
N)

in d = 3. This problem has dN degrees of freedom and the phase space has dimension
2dN .

The Hamiltonian of the system, H , is a function of the particles’ position and momenta.
It can be explicitly time-dependent but we shall not consider these cases here. The
particles’ time evolution, ( ~Q, ~P )(t), starting from a given initial condition, ( ~Q, ~P )(t = 0), is
determined by Hamilton’s equation of motion that are equivalent to Newton dynamics. As
time passes the representative point in phase space, ( ~Q, ~P )(t), traces a (one dimensional)
path in Γ, the phase-space trajectory. Through each point in phase space there passes one
and only one trajectory. Any function of the ( ~Q, ~P )(t) is called a phase function. The
most important one in the Hamiltonian itself, that determines the evolution of the system
via the equations of motion. The energy, E, or the value the Hamiltonian takes on any
point of the trajectory, is conserved if the Hamiltonian does not depend on time explicitly
and thus all points in any trajectory lie on a constant energy surface, H( ~Q, ~P ) = E.

But, can one really describe the evolution of such a system? In practice, one cannot
determine the position and momenta of all particles in a macroscopic system with N ≫ 1
with great precision – uncertainty in the initial conditions, deterministic chaos, etc. A
probabilistic element enters into play. What one really does is to estimate the probability
that the representative point of the system lies in a given region of Γ at time t given
that it started in some other region of Γ at the initial time. Thus, one introduces a time-
dependent probability density ρ( ~Q, ~P ; t) such that ρ( ~Q, ~P ; t)dΓ is the probability that the

representative point is in a region of volume dΓ around the point ( ~Q, ~P ) at time t knowing

the probability density of the initial condition, ρ( ~Q, ~P ; t = 0). Conditions on ρ to make

it a probability density, ρ( ~Q, ~P ; t) ≥ 0 for all ( ~Q, ~P ) and t, and
∫

Γ
dΓ ρ( ~Q, ~P ; t) = 1 at all

times, need to be satisfied.
Note that if initially one knows the state of the system with great precision, the initial

ρ will be concentrated in some region of phase space. At later times, ρ can still be localised
– perhaps in a different region of phase – or it may spread. This depends on the system
and the dynamics (Newton-Hamilton or dissipative, for example).
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1.2 Elements in statistical mechanics 1 BASIC NOTIONS

We now need to find an equation for the evolution of the probability density ρ knowing
the evolution of the phase space coordinates ( ~Q, ~P ). The key point is that ρ behaves as the
density of a fluid, it can change in time, decreasing somewhere and increasing somewhere
else but this can only do continuously, with the density flowing from one region to another.
The consequence is that ρ must satisfy a continuity equation. Analogously to the global
conservation of the mass in a fluid, ρ conserves the probability.

ρ can vary in time due to two mechanisms; an explicit time variation, and the time
variation of the coordinates and momenta as the representative point wanders in phase
space. These variations are captured or represented by the dynamic equation

dρ

dt
=

∂ρ

∂t
+ {ρ,H} (1.1)

valid for Hamiltonian dynamics, with {f, g} the Poisson bracket,

{f, g} ≡ ∂f

∂qai

∂g

∂pai
− ∂f

∂pai

∂g

∂qai
. (1.2)

It leads to
dρ

dt
=

∂ρ

∂t
+

∂ρ

∂qai
q̇ai +

∂ρ

∂pai
ṗai , (1.3)

with q̇ai = dqai /dt and ṗai = dpai /dt, the summation convention over repeated indices

(i labels particles and a labels coordinates), and ρ( ~Q, ~P , 0) known. (See the attached
handwritten notes for the derivation of eq. (1.3).)

Probability behaves like an incompressible fluid in phase space (see the attached hand-
written notes for the proof) and one can then use knowledge of fluid mechanics to analyze

the equation above. The partial derivative of ρ is taken at fixed ( ~Q, ~P ) and represents the
time-variation of ρ as the fluid passes by the chosen point in phase space. The total deriva-
tive in the left-hand-side is, instead, the time-variation as we follow the displacement of
a ‘piece’ of fluid in phase space.

Liouville’s theorem states that the ensemble of systems (as represented by a point in
phase space) in the vicinity of a given system remains constant in time:

dρ

dt
= 0 . (1.4)

A detailed description of Liouville’s theorem is given in [10, 12] (see handwritten notes).
In statistical equilibrium one expects the systems to reach stationarity and then the

explicit time-variation to vanish
∂ρ

∂t
= 0 . (1.5)

In this case, the distribution ρ is constant on the phase trajectories. One may wonder
whether this solution is reached from generic initial conditions.

Liouville’s equation (1.3) is invariant under time-reversal, t → −t and ~p → −~p. Indeed,
the existence of a conserved current implies, via Noether’s theorem, the existence of a
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1.3 The ergodic hypothesis & Gibbs ensembles 1 BASIC NOTIONS

symmetry. The symmetry is invariance under time translations, and the generator of the
symmetry (or Noether charge) is the Hamiltonian.

The time-reversal symmetry implies that, for generic initial conditions the solutions to
Liouville’s equation oscillate in time and do not approach a single asymptotic stationary
solution that could be identified with equilibrium (∂tρ = 0). The problem of how to
obtain irreversible decay from Liouville’s equation is a fundamental one in Statistical
Mechanics. We shall not deepen this discussion here; let us just mention that the main
attempt to understand the origin of irreversibility is in terms of flows in phase space, and
this approach is called ergodic theory, as founded by Boltzmann by the end of the XIXth
century [6].

In the absence of a good way to determine the evolution of ρ and its approach to a
stationary state, one simply looks for stationary solutions without worrying about how
the ensemble reaches them. This can be restated as the following hypothesis:

As t → ∞ one expects that the statistical properties of the system be independent
of time and hence ρ( ~Q, ~P ; t) → ρ( ~Q, ~P ).

Setting now ∂tρ = 0 one realizes that the remaining equation admits, as a solution, any
function of the coordinate and momenta only via the Hamiltonian H . The characteristics
of the ensemble are then determined by the chosen function ρ(H).

1.3 The ergodic hypothesis & Gibbs ensembles

Finally, let us discuss Boltzmann’s and Gibb’s interpretation of averages and the ergodic
hypothesis. Boltzmann interpreted macroscopic observations as time averages of the form1

A ≡ lim
τ→∞

1

τ

∫ τ

0

dt A( ~Q(t), ~P (t)) . (1.6)

The fact that this limit exists is the content of a Theorem in Classical Mechanics initially
proven by Birkhoff and later by Kolmogorov [10]. Note that in classical mechanics the
choice of the initial time is irrelevant.

With the introduction of the concept of ensembles Gibbs gave a different interpretation
(and an actual way of computing) macroscopic observations. For Gibbs, these averages
are statistical ones over all elements of the statistical ensemble,

〈A 〉 = c

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i ρ(

~Q, ~P )A( ~Q, ~P ) , (1.7)

1In practice, in and experiment or numerical simulation initiated at time t = 0, averages
are computed over a symmetric time interval around a measuring time t, in the form A ≡
limt0≪τ≤t

1

2τ

∫ t+τ

t−τ
dt′ A( ~Q(t′), ~P (t′)) with the lower bound in the limit representing a microscopic time-

scale. The result should be independent of the measuring time t.
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1.3 The ergodic hypothesis & Gibbs ensembles 1 BASIC NOTIONS

with ρ the measure. In the microcanonical ensemble this is an average over micro-states
on the constant energy surface taken with the microcanonical distribution (2.10):

〈A 〉 = c

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i δ(H( ~Q, ~P )−E)A( ~Q, ~P ) , (1.8)

and the normalization constant c−1 =
∫
∏N

i=1

∏d
a=1 δ(H( ~Q, ~P ) − E). In the canonical

ensemble the average is computed with the Gibbs-Boltzmann weight:

〈A 〉 = Z−1

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i e

−βH(~Q, ~P )A( ~Q, ~P ) . (1.9)

Z is the partition function Z =
∫
∏N

i=1

∏d
a=1 dq

a
i dp

a
i e

−βH(~Q, ~P ).
The (weak) ergodic hypothesis states that under the dynamic evolution the representa-

tive point in phase space of a classical system governed by Newton laws can get as close
as desired to any point on the constant energy surface.

The ergodic hypothesis states that time and ensemble averages, (1.6) and (1.7) coin-
cide in equilibrium for all reasonable observables. This hypothesis cannot be proven in
general but it has been verified in a large number of cases. In general, the great success
of Statistical Mechanics in predicting quantitative results has given enough evidence to
accept this hypothesis.

An important activity in modern Statistical Mechanics is devoted to the study of
macroscopic systems that do not satisfy the ergodic hypothesis. A well-understood case
is the one of phase transitions and we shall discuss it in the next section. Other cases are
related to the breakdown of equilibration. This can occur either because they are exter-
nally driven or because they start from an initial condition that is far from equilibrium
and their interactions are such that they do not manage to equilibrate. One may wonder
whether certain concepts of thermodynamics and equilibrium statistical mechanics can
still be applied to the latter problems. At least for cases in which the macroscopic dy-
namics is slow one can hope to derive an extension of equilibrium statistical mechanics
concepts to describe their behavior.

Finally, let us remark that it is usually much easier to work in the canonical ensemble
both experimentally and analytically. Thus, in all our future applications we assume that
the system is in contact with a heat reservoir with which it can exchange energy and that
keeps temperature fixed.
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2 The statistical (Gibbs) ensembles

In this Section we discuss some aspects of the standard Statistical Physics approach
to equilibrium systems that are often overlooked in the elementary courses on Statistical
Mechanics. They concern the differences encountered in the description of systems with
short and long range interactions, as we defined them below.

Gibbs introduced the notion of statistical ensembles and, usually, equivalence between
the thermodynamic descriptions derived from all of them is assumed (in the thermody-
namic limit). We discuss here cases in which there can be inequivalence of ensembles even
when the number of degrees of freedom diverges [16, 17, 18].

To start with, we recall the three ensembles used. These are:

• The microcanonical ensemble describes a completely isolated system at a given
energy E.

• The canonical ensemble describes a system that can exchange energy with a large
thermal reservoir characterised by its temperature T .

• The grand canonical ensemble describes a system that can exchange energy and
particles with a reservoir withs temperature T and chemical potential µ.

As preliminary let us define a microstate as a precise microscopic state (for example,

a given ( ~Q, ~P )). A macrostate is defined in terms of a small set of macroscopic or coarse-
grained variables and it refers to the (large) set of microstates that yield the same value of
the macroscopic variables (for example, all the configurations that share the same kinetic
and potential energy values in a system of interacting particles).

2.1 The microcanonical ensemble

In the microcanonical ensemble one makes the following hypothesis:

In the long-time limit the system does not prefer any special region on the constant
energy surface in Γ – there is a priori no reason why some region in Γ should be more
probable than others! – and thus ρ( ~Q, ~P ) is expected to be a constant on the energy
surface and zero elsewhere:

ρ( ~Q, ~P ) =

{

ρ0 if H( ~Q, ~P ) ∈ (E,E + dE) ,
0 otherwise ,

(2.10)

The constant ρ0 is the inverse of the volume of the constant energy surface ensuring
normalisation of ρ. This is indeed the simplest stationary solution to eq. (1.3).

9



2.1 The microcanonical ensemble 2 THE STATISTICAL (GIBBS) ENSEMBLES

These hypotheses can be valid only if the long-time dynamics is reasonably independent
of the initial conditions.

Even though it is very difficult to show, the solution proposed above is very smooth
as a function of ( ~Q, ~P ) and it is then the best candidate to describe the equilibrium state
– understood as the one that corresponds to the intuitive knowledge of equilibrium in
thermodynamics.

This description corresponds to the microcanonical ensemble of statistical mechanics,
valid for closed systems with fixed energy E and volume V . Each configuration on the con-
stant energy surface is called a microstate. In the microcanonical ensemble all microstates
are equivalent. We can think about all these microstates as being (many) independent
copies of the original system. This is Gibbs’ point of view: he introduced the notion of
ensemble as the collection of mental copies of a system in identical macroscopic conditions.

The average of any phase space function A( ~Q, ~P ) can now be computed as

〈A 〉 =

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i ρ(

~Q, ~P )A( ~Q, ~P )

=

(

1

N !g(E)

)
∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i δ[E −H( ~Q, ~P )]A( ~Q, ~P ) . (2.11)

The normalisation constant c =
∫
∏N

i=1

∏d
a=1 dq

a
i dp

a
i δ[E − H( ~Q, ~P )] = N !g(E) is the

volume of phase space occupied by the constant energy surface itself. The quantity g(E)
is called the density of states:

g(E) ≡ 1

N !

∫ N
∏

i=1

d
∏

a=1

δ[E −H( ~Q, ~P )] . (2.12)

The microcanonical entropy is

S(E) ≡ kB ln g(E) . (2.13)

Maximisation of entropy is thus equivalent to the maximisation of the phase volume
available to the system.

The temperature is defined, in the microcanonical ensemble as

1

T
=

∂S(E)

∂E
. (2.14)

A positive temperature needs, therefore, that S(E) be an increasing function of E.
Note that the nature of the interactions between the constituents has not been men-

tioned in this discussion. There is no reason to believe that the microcanonical description
would fail for some type of interaction as the gravitational one, a case that we shall discuss
in detail below.
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2.2 Extensivity and additivity: short and long range interactions

Once the microcanonical ensemble has been established one usually goes further and
derives what is called the canonical ensemble describing the statistical properties of a sys-
tem that can exchange energy with its surrounding. When trying to derive the canonical
description from the microcanonical one, the distinction between systems with short and
long interactions becomes important. We discuss here two properties that allow one to
differentiate these two classes.

First of all, we have to determine how do the constituents of the system interact, that
is to say, which are the forces acting between them. We consider systems where the
interaction potential is given by the sum, over pairs of the elementary constituents, of a
two-body translationally invariant potential.

A system of N particles confined inside a volume V is said to be extensive if, when
the number of particles and the volume are scaled by λ, the internal energy E(λN, λV )
of the system scales as λE(N, V ).

It is easy to see that systems with short-range forces are extensive2.

Let us consider a macroscopic system with volume V and divide it in two pieces with
volumes V1 and V2, with V = V1+V2. The aim is to characterise the statistical properties
of one subsystem (say 1) taking into account the effect of its interaction with the rest
of the macroscopic system (subsystem 2). It is clear that the energy of the subsystems
is not fixed since these are not closed: they interact with each other. The total energy,
E, is then the sum of the energies of the two sub-ensembles plus the interaction energy
between the two pieces, E = E1 + E2 + EI .

If the interactions between the constituents of the system are short-ranged, in the sense
that the interaction energy is proportional to the surface between the two pieces, EI ∝ S,
while the energy of each subsystem will be extensive and proportional to their volumes,
E1 ∝ V1 and E2 ∝ V2. Thus, for a macroscopic system, EI is negligible with respect to
E1 + E2.

If, instead, the interactions between the constituents are sufficiently long-ranged the
separation into volume and surface contributions to the total energy does not apply any
longer. This remark allows one to define the following property.

2If the interaction potential is short-range, each particle will interact only with the particles which are
within the range γ of the interaction potential. Suppose that a system is homogeneous, the number of
particles within the distance γ of a given particle will then be proportional to Nγd/V and the internal
energy must have the form of E(N, V ) = Nf(N/V ), where f(x) is a function that depends on the
microscopic interactions between the particles. Actually, it is not necessary for the interaction potential
to be bounded by γ; algebraically decaying potentials will lead to extensive thermodynamics as long as
they decay sufficiently rapidly, i.e. if α > d.
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The additivity property, states that

E = E1 + E2 , (2.15)

for any two subsystems 1 and 2 of a macroscopic system. An alternative definition of
systems with short range interactions applies to those for which the additivity property
holds, and systems with long range interactions as those for which this property fails.

In some cases, the energy of a system with long-range interactions can be rendered
extensive (instead of super-extensive) by properly scaling the interaction parameters with
the number of degrees of freedom.

One such example is the case of an Ising spin model with fully-connected ferromagnetic
interactions (the Curie-Weiss model): H = −J/2

∑

i 6=j sisj with si = ±1 and J > 0. The
sum runs over all pairs of spins in the ensemble with the constraint i 6= j. The factor 1/2
ensures that each pair of spins contributes only once to the sum. Clearly, the ferromagnetic
configurations have a super extensive energy, since H(si = 1) = −J/2 N(N − 1) →
−J/2 N2 for N ≫ 1. This problem can be corrected by scaling J 7→ J/N , in which case
H(si = 1) = −J/2 (N−1) and energy extensivity is restored. However, the energy remains
non-additive since all spins still interact with all other ones in the sample and there is no
notion of interface between two subsystems. Indeed, let us explore the additivity property
of the energy for the perfectly magnetised state. The total energy is E = −J(N − 1).
If we now divide the system in two subsystems with N/2 spins each the total energy of
each subsystem is E1 = −J(N/2 − 1)/4 and E2 = −J(N/2 − 1)/4 and one notices that
E 6= E1+E2. More precisely, EI ≡ E− (E1+E2) = −JN/4, still a macroscopic quantity.
One has

E ∼ E1 ∼ EI ∼ −JN (2.16)

all these energies are of the order of the number of spins in the sample. (In contrast, in the
usual Ising model defined on a d dimensional lattice with nearest-neighbour interactions
the additivity properties holds.)

Another example is the self-gravitating gas in a low dimensional space. As the inter-
action is attractive, one and two dimensional gravitational systems are self-confining and
one can safely take the infinite volume limit V → ∞ and focus on the scaling of the
energy with the number of particles. In order to avoid the non-extensivity of the energy,
the gravitational constant can be rescaled by a factor 1/N , the so-called Kac prescription.
However, the energy remains non-additive after this rescaling.

Note that that non-additivity also occurs in systems with short-range interactions in
which surface and bulk energies are comparable; this is realised in finite size problems.

12
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2.3 The canonical ensemble

Let us review the derivation of the canonical distribution. Consider a system with
volume V , divide it in two pieces with volumes V1 and V2, with V = V1+V2, and energies
E1 and E2. If we assume that the two systems are independent with the constraint that
E1 +E2 = E, i.e. the additivity property, the probability of subsystem 1 to get an energy
E1 is

P (E1) dE1 ∝
∫

dE2 g(E1, E2) δ(E − E1 −E2) dE1

=

∫

dE2 g1(E1)g2(E2) δ(E −E1 − E2) dE1

= g1(E1)g2(E −E1) dE1

= g1(E1)e
k−1
B S2(E−E1) dE1

≃ g1(E1) e
k−1
B S2(E)+k−1

B ∂ES2(E)(−E1) dE1

∝ g(E1)e
−β2E1 dE1 (2.17)

where we used the definition of the microcanonic inverse temperature of the second com-
ponent, β2 = 1/(kBT2). Note that in the next to last passage we dropped all higher order
terms in the Taylor expansion assuming that E1 ≪ E. After fixing the normalisation,
and calling β2 → β,

P (E1) = Z−1(β) g(E1)e
−βE1 with Z(β) =

∫

dE1 g(E1)e
−βE1 . (2.18)

Let us recap the assumptions made: (i) independence, g(E1, E2) = g(E1)g(E2), (ii)
energy additivity E2 = E − E1, (iii) small system 1 (E1 ≪ E), (iv) constant inverse
‘temperature’ kBβ ≡ ∂ES(E). Note that assumptions (i) and (ii) fail in systems with
long-range interactions. In these cases the microcanonical ensemble is well-defined though
difficult to use, and the canonical is not even defined!

First example: the power-law potential

In the field of particle systems with two-body interactions falling-off with distance as
a power law

V (r) ∼ r−α (2.19)

one finds that the interactions are

• long-ranged if α < d,

• short-ranged if α > d,

13
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with d the dimension of space. A simple way of showing this general result is the following.
Take a point particle with unit mass and place it at the origin of coordinates. Consider its
interaction with a homogeneous massive spherical shell with internal radius ǫ and external
radius R. The total energy, e, felt by the central particle is

e = −
∫

V

ddx
Jρ

rα
= −Ωd Jρ

∫ R

ǫ

dr
rd−1

rα
= −Ωd Jρ

d− α

[

Rd−α − ǫd−α
]

, (2.20)

where we adopted the potential V (r) = Jr−α for all r, and the particle density is ρ. Ωd is
the angular volume, Ωd = 2π in d = 2, Ωd = 4π in d = 3, etc. For α > d the contribution
from the surface (r = R) is negligible while for α ≤ d it grows with the volume V ∝ Rd

as V 1−α/d. In the latter case surface effects cannot be neglected and the total energy
E = V e, is super-linear with the volume:

E ≃ V Rd−α ≃ R2d−α = Rd(2−α/d) = V 1+1−α/d (2.21)

for 1−α/d > 0. Therefore, the energy is super extensive. E ≃ V 2−α/d. This problem can
be solved by scaling the interactions analogously to what was done in the fully-connected
spin model (defined on the complete graph), i.e. one can redefine the coupling constant
J 7→ J/V α/d−1 and get an extensive system, E ∝ V . However, the lack of additivity will
not be restored, as there is no clear distinction between bulk and surface in models with
long-range interactions.

This definition implies then that the gravitational interaction, VG(r) = −Gm2r−1 is
long-ranged in three spatial dimensions while the Van der Waals interaction, VVW (r) ∝
r−6, is short-ranged. The long-ranged interactions are sometimes called non-integrable in
the literature. Plasma physics also provides examples of non-additive systems through an
effective description.

The failure of energy additivity is at the origin of the unusual equilibrium and dy-
namic behaviour of systems with long-range interactions. Surprisingly enough, one finds
that many usual thermodynamic results are modified with, for example, systems having
negative microcanonical specific heat; moreover, the statistical ensembles (microcanonic,
canonic and macrocanonic) are no longer equivalent, as we saw above with the failure of
the derivation of the canonical ensemble from the microcanonical.

The statistical physics of self-gravitating systems falls into this class of bizarre problems
and there is much current research [13, 14, 15] to try to elucidate their properties.

The canonical ensemble does not describe the fluctuations of a small subsystem of a
system with constituents interacting via long-range interactions. One can, however, argue
that it will describe the fluctuations of a system with long-range internal interactions
connected, via short-range interactions, with another larger systems that acts as a heat-
bath and, itself, with only internal short-range interactions. This claim leads us to the
issue of the reduction of a larger system into a smaller one by integrating away a large
part of the combined ensemble, a problem that we will discuss in Sec. 4.2.

14
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2.4 The specific heat

2.4.1 Gaussian energy fluctuations in the canonical ensemble

The probability distribution P (E) in the canonical ensemble, P (E) = g(E)e−βE/Z,
has a extremum at E = U(β), with U(β) given by3

∂ES(E)|E=U(β) = kBβ = T−1 , (2.22)

where S(E) ≡ kB ln g(E) is the (microcanonic) entropy defined from the density of states
g(E), see eq. (2.13). The stability of this extremum depends on the sign of ∂2

ES(E)|E=U(β)

and we examine it below.
The Taylor expansion of lnP (E) around E = U (not writing the β dependence of U

to lighten the notation) yields

ln[P (E)/Z] ∼ −β[U − TS(U)] +
1

2kB

∂2S(E)

∂E2

∣

∣

∣

∣

E=U

(E − U)2 + . . .

∼ −β[U − TS(U)]− kB
2
β2 1

Ccan
V

(E − U)2 + . . . (2.23)

where we took the derivative of (2.22) with respect to β

1 =
∂2k−1

B S(E)

∂E2

∣

∣

∣

∣

E=U(β)

∂U(β)

∂β
(2.24)

to replace the coefficient of the quadratic term as a function of the canonical specific heat4

Ccan
V ≡ ∂U(T )

∂T
= −kBβ

2 ∂U(β)

∂β
. (2.25)

If Ccan
V > 0, the energy probability density P (E) is a Gaussian centred at U (thus

U = 〈E 〉) with variance σ2 = Ccan
V /(kBβ

2) (thus 〈 (E − U)2 〉 = Ccan
V /(kBβ

2)).

Is the assumption Ccan
V > 0 true? Indeed, it is. In the canonical ensemble the constant

volume specific heat (note that it is defined though U(β) an entity that is canonical by
construction)

Ccan
V = −kBβ

2 ∂U(β)

∂β
= −kBβ

2 ∂〈E 〉(β)
∂β

= kBβ
2 ∂2 lnZ(β)

∂β2

= kBβ
2

[

− 1

Z2(β)

(

∂Z(β)

∂β

)2

+
1

Z

∂2Z(β)

∂β2

]

= kBβ
2
[

〈E2 〉(β)− 〈E 〉2(β)
]

= kBβ
2 〈 (E − 〈E 〉)2 〉(β) > 0 (2.26)

3One proves it by taking the ln (a monotonic function of its argument), replacing g(E) by its relation
to S(E), and taking the derivative.

4In order to check the presence of the kB factors one can do a dimensional analysis and see that
[Ccan

V
] = [kB].
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is positive definite. All averages in these expressions have to be computed with the
canonical pdf.

In this process we have proven a form of fluctuation-dissipation theorem or, in other
words, a relation between a susceptibility (to changes in temperature) and connected fluc-
tuations (of the energy):

−∂〈E 〉
∂β

= 〈 (E − 〈E 〉)2 〉 ⇒ ∂〈E 〉
∂T

= kBβ
2 〈 (E − 〈E 〉)2 〉 (2.27)

In an extensive macroscopic system with N particles, U ∝ N and Ccan
V ∝ N in which

case the ratio between dispersion and typical energy, or relative fluctuation, vanishes as
σ/U ∝ N−1/2. In the large N limit, fluctuations are ‘killed’, the energy in the canonical
ensemble does not fluctuate, it is locked to the value U , and it is related to the temperature
through (2.22).

In the thermodynamic limit N → ∞ the relative fluctuations σ/U ∝ N−1/2 → 0 and
E → U(β).

One thus proves the equivalence between the microcanonical and canonical results.

2.4.2 Negative specific heat and convex entropy function in the microcanonic
ensemble

What happens when the equivalence fails? What kind of peculiar effect can one expect
to find? One of the simplest mismatches found is the possibility of having negative
specific heat in some region of parameters in the microcanonical description of systems
with long-range interactions. This is impossible in a canonical formalism. Indeed, the
microcanonical constant volume specific heat is defined as

Cmicro
V ≡ −kBβ

2 ∂E(β)

∂β
=

∂E(T )

∂T
(2.28)

[one inverts β(E) = k−1
B ∂ES(E) to write E(β) or 1/T (E) = ∂ES(E) to write E(T )] and

this quantity is not positive definite if the entropy is not concave. Indeed, after the simple
manipulation,

∂2S

∂E2
=

∂

∂E

(

∂S

∂E

)

=
∂

∂E

(

1

T

)

= − 1

T 2

∂T

∂E
= − 1

Cmicro
V

1

T 2
(2.29)

and
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the convexity of the entropy, ∂2S/∂E2 > 0 for some values of the energy implies that
Cmicro

V < 0 for those same values.

When the two ensembles are equivalent the micronanonical Cmicro
V should be identical to

the canonical one, Ccan
V , and thus positive. However, it is possible to construct models, for

instance those with long-range interactions, such that Cmicro
V is negative in some range of

parameters (these are usually related to temperature jumps at first order phase transitions
in the canonical ensemble).

2.4.3 Phase transitions

It turns out that when Cmicro
V < 0 the system undergoes a phase transition in the

canonical ensemble.

2.5 The macrocanonical ensemble

Finally in the macrocanonical ensemble one characterises the macroscopic state with
the volume V , the temperature T , and the chemical potential µ.

Summarizing, in the microcanonical ensemble the system is isolated and temperature
is defined as T−1 ≡ ∂S/∂E|E . In the canonical ensemble the system is in contact with a
reservoir – considered to be a much larger system – with which it can exchange energy to
keep temperature fixed to be the one of the external environment. In the macrocanonical
ensemble the system is in contact with a reservoir with which it can exchange energy and
particles. The equivalence between them is ensured only for systems with short-range
interactions.

2.6 Equivalence of ensembles

The practical consequence of ensemble equivalence is that one has the freedom to choose
the ensemble in which calculations are easier. In spite of its fundamental importance in
the construction of statistical mechanics, the microcanonical ensemble is practically never
used to perform analytical calculations, since calculations are much harder in its setting
than in the canonical one. The microcanonical ensemble is, however, commonly used in
numerical simulations, since its at the basis of molecular dynamic simulations.

Paraphrasing H. Touchette [19], the questions as to whether there is equivalence of
ensembles can be posed in different ways:

• Thermodynamic equivalence. Are the microcanonical thermodynamic properties of
a system determined from the entropy as a function of energy the same as the
canonical thermodynamic properties determined from the free energy as function of
temperature? Are energy and temperature always one-to-one related?
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• Macrostate equivalence. Is the set of equilibrium values of macrostates (e.g., mag-
netization, energy, velocity distribution, etc.) determined in the microcanonical
ensemble the same as the set of equilibrium values determined in the canonical
ensemble? What is the general relationship between these two sets?

• Measure equivalence. Does the Gibbs distribution defining the canonical ensemble
at the microstate level converge (in some sense to be made precise) to the micro-
canonical distribution defined by Boltzmann’s equiprobability postulate?

Equivalence holds at the thermodynamic level whenever the entropy is concave, that
is to say, ∂2S(E)/∂E2 < 0 (see the proof below). This also implies, under additional con-
ditions, the equivalence of the microcanonical and canonical ensembles at the macrostate
level. Less is known about the measure equivalence. A survey of recent research on this
field can be found in [19]. Systems with short-range interactions have concave entropies
and for them equivalence of ensembles is insured. Systems with long-range interactions
can have non-concave5 entropies and, therefore, inequivalence of ensembles can apply to
them [16, 17, 18].

The proof goes as follows. The partition function Z and the free-energy density f are
linked by

Z(β, V,N) = e−βNf(β,v) (2.30)

with v = V/N and the large N limit assumed. For a system of N identical particles, the
partition function can be expressed as

Z(β, V,N) =
1

N !

∫

dE

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i δ(E −H( ~Q, ~P )) e−βE

=

∫

dE g(E, V,N) e−βE

=

∫

dE e−N [βε−s(ε,v)] (2.31)

where, for large N , we replaced S(E, V,N) = Ns(ε, v) with ε = E/N and v = V/N .
In the large N limit we can evaluate the last integral by saddle-point iff the entropy is
concave, ∂2S(E)/∂E2 < 0, otherwise the Gaussian corrections would make the remaining
integral explode. Assuming concavity,

βf(β, v) = inf
ε

[βε− s(ε, v)] (2.32)

obtaining that βf(β, v) is the Legendre transform of s(ε, v). One can proceed backwards
and derive that s is the Legendre transform of βf

s(ε, v) = inf
β

[βε− βf(β, v)] . (2.33)

5A concave entropy density, limN→∞ S(E, V,N)/N , function satisfies s(ce1+(1−c)e2, v) ≥ cs(e1, v)+
(1− c)s(e2, v) for any choice of e1 = E1/V , e2 = E2/V , v = N/V and 0 ≤ c ≤ 1.
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For each value of β there is a value of ε that satisfies (2.32) and viceversa for (2.33).
In cases in which the entropy has a convex region, the inverse Legendre transform

leading from βf to s yields the concave envelope of s (and cannot access its convex
piece).

Ensemble inequivalence is not merely a mathematical drawback, but it is the cause of
physical properties that can be experimentally verified.

2.7 Non-equilibrium steady states

The dynamics of systems with long-range interactions can be extremely slow and the
approach to equilibrium can take a very long time, that increases with the number N of
elementary constituents. This feature is induced by the long-range nature of the interac-
tion itself and it is not a consequence of the existence of a collective phenomenon. The
state of the system during this long transient is quasi-stationary but it is not a thermody-
namic metastable state, as it does not lie on local extrema of equilibrium thermodynamic
potentials. The nature of quasi-stationary states can depend on the initial condition. In
addition, a variety of macroscopic structures can form spontaneously in out-of-equilibrium
conditions for isolated systems: a fact that should not be a surprise given that already
the equilibrium states of long-range systems are usually inhomogeneous.

2.8 Many physical examples

Computing the microcanonical distribution function of macroscopic systems with real-
istic long-range interactions is usually prohibitly difficult. One then works with toy models
that are much simpler but capture the essential features of the realistic problems. Some
of the toy models that have been studied in detail are

• The self-gravitating two-body problem:

H(~P , ~Q, ~p, ~r) =
P 2

2M
+

p2

2µ
− Gm2

r
(2.34)

where ~P and ~Q are the momentum and coordinate of the center of mass and ~p and
~q are the relative moment and coordinate, M = 2m is the total mass, µ = m/2 is
the reduced mass and m is the mass of the individual particles. The distance r is
the modulus of the vector ~q. One also restricts the range of the r coordinate to the
interval (a, R). The short-distance cut-off mimics hard spherical particles of radius
a/2. In the limits a → 0 and R → ∞ this is the standard Kepler problem.

The statistical mechanics of this system are described in detail in [13]. The system
has two natural energy scales E1 = −Gm2/a and E2 = −Gm2/R with E1 < E2. For
E ≫ E2 gravity is irrelevant, there is a long distance between the particles (r > R)
and the system behaves like a gas, confined by a container. The microcanonic heat
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capacity is positive. As one lowers the energy the effects of gravity begin to be
felt. For E1 < E < E2 neither the box nor the short-distance cut-off have an
effect and there is a negative specific heat. As E ∼ E1 the hard core nature of
the particles becomes important and gravity is again resisted, this is the low energy
phase with positive microcanonic specific heat. The T (E) dependence (and hence
the microcanonical specific heat) is shown in Fig. 2.1. It must be noticed that
astrophysical systems are in the intermediate energy scales with negative specific
heat; moreover, this range is pretty wide since E1 ≪ E2.

One can also analyse the canonical partition function – knowing already that it
should predict a different behaviour from the above in the region [E1, E2]. In par-
ticular, one can compute the mean energy and its relation with temperature to
compare with the microcanonical behaviour. One finds that at very low and very
high energies the curves coincides. In the intermediate region the canonical T (E)
relation is almost flat and the canonical specific heat takes a very large value, al-
most a divergent one. This is similar to a phase transition in which the specific heat
would diverge. The divergence is smoothened in this case due to the fact that there
is a finite number of degrees of freedom in the two body problem.

• The Lynden-Bell model is a model of (2N + 1) coordinates evolving through the
Hamiltonian

H =
p2

2m
+

N
∑

i=1

1

2mr2

(

pθ
2
i +

pφ
2
i

sin2 θi

)

− Gm2

2r
(2.35)

with r constrained to take values in (a, R). In this model one can take the large N
limit and recover a true phase transition in the canonical formulation.

• The Thirring model is one with a set of N particles in a volume V . The particles
interact with a constant potential if they come within an interaction volume Vo. In
both the Lynden-Bell and Thirring models in the high energy regime the particles
occupy space uniformly: it is a homogeneous phase. In the low energy regime instead
the particles are close together in a collapsed phase.

• The self-gravitating gas. Consider a system of N particles interacting through New-
tonian gravitational forces alone. The properties of this system depend on N . If
N = 2 it is the exactly solvable Kepler problem, for N = 3 − 50, say, it cannot be
solved exactly but it can be tackled with a computer. For larger N , N = 105−1011,
say, one is interested in averaged properties and statistical methods should be used.

First, one must recall that a short-distance cut-off is necessary to render all phase
space integrals convergent. This is justified by arguing that at very short distances
not only the gravitational force acts on the particles and other forces regularise the
r → 0 behaviour of the total interaction potential.
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Figure 2.1: The temperature against the energy for the two-body problem with gravi-
tational interaction with cut-off a in a box of size R. The microcanonical curve is non-
monotonic with a negative specific heat in the region E ∼ [−0.4, 0]. The canonical curve
is monotonic and almost flat – as in a smoothened phase transition – in the region in
which Cmicro

V < 0.

It turns out that an interesting thermodynamic limit of the three ensembles (micro-
canonical, canonical and macrocanonical) is achieved in the very dilute limit [14, 15]

η ≡ Gm2N

V 1/3T
finite . (2.36)

In this limit the thermodynamic quantities (free energy, energy, etc.) are functions
of η and T and scale with N . Instead, the chemical potential and specific heat
are just functions of T and η. The system undergoes collapse phase transitions in
microcanonical and canonical ensembles though their location is different.

• The fully-connected Blume-Capel lattice spin-1 model,

H = ∆
N
∑

i=1

s2i −
J

2N

(

N
∑

i=1

si

)2

, (2.37)

with si taking three values, si = ±1, 0, J > 0 the ferromagnetic coupling, ∆ > 0 the
parameter that controls the energy difference between the ferromagnetic ±1 states
and the paramagnetic si = 0 state. The normalisation of the interaction term with
N ensures that the total energy is extensive, i.e. E = O(N). This model has a
phase diagram with two phases, ferromagnetic and paramagnetic, separated by a
transition curve that is of second order for small ∆ (the Curie-Weiss limit is attained
for ∆ = 0) and of first order for large ∆. Details on the solution of this mean-field
model are found in [16].

• The Hamiltonian mean-field model is defined by

H =

N
∑

i=1

p2i
2

+
J

2N

∑

ij

[1− cos(θi − θj)] (2.38)
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It represents unit mass particles moving on a unit circle with momenta pi and
position represented by an angular variable θi ∈ [0, 2π). The interactions are such
that each particle interacts with all other ones in the same attractive (J > 0) or
repulsive (J < 0) way (classical XY rotors).
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3 INTEGRABLE SYSTEMS AND GGES

3 Integrable systems and generalised Gibbs ensembles

In the past decade, atomic physics experiments have been able to test the global co-
herent dynamics of many-body interacting systems. As a result, interest in far from equi-
librium many-body Hamiltonian dynamics, coherent many-body dynamics has emerged.
Moreover, some of the quantum systems realised in the laboratory are modelled by Inte-
grable systems and this fact re-boosted the interest in these models and their statistical
physics description. These lectures treat only classical system and the rest of this Section
will therefore focus on the Statistical Mechanics of classical integrable systems.

Integrable systems are nonlinear differential equations which, in principle, can be solved
analytically, i.e. the solution can be reduced to a finite number of algebraic operations
and integrations. The integrability of ordinary differential equations can be defined based
on the existence of sufficiently many well-behaved first integrals or constant of motions.
Integrability is related to a sufficiently large symmetry group that allows a construction
of the most general solution.

In more concrete terms, an integrable system consists of a 2n-dimensional phase space
Γ together with n independent functions (in the sense that the gradients ∇Ok are linearly
independent vectors on a tangent space to any point in Γ) O1, . . . , On: Γ → R, such that
the mutual Poisson brackets vanish:

{Oj, Ol} = 0 for all j, l (3.39)

(it is often said that the Ok are then in involution). We will assume henceforth that
the Ok do not depend explicitly on time and that, threfore dOk/dt = 0 is equivalent to
{H,Ok} = 0. Conventionally, the first function O1 is the Hamiltonian itself and therefore
the first constant of motion is the energy. All other Ok with k 6= 1 are also constant of
motion since their Poisson bracket with H vanishes. The dynamics of the system, can then
be seen as the motion in a manifold with dimension 2n− n = n. Under these conditions
Hamilton’s equations of motion are solvable. The way to solve them is to perform a
canonical transformation6 into action, angle variables (Ik, φk), with k = 1, . . . , n such
that the Hamiltonian transforms into H̃(Ik) and

Ik(t) = Ik(0) , φk(t) = φk(0) + t
∂H̃

∂Ik
= φk(0) + t ωk(I) . (3.40)

The action functions Ik(t) are conserved quantities and we collected them all in I in the
dependence of the frequencies ωk(I). The remaining motion is given by n circular motions
with constant angular velocities. Both deciding whether a system is integral and finding

6A canonical transformation is a change of variables that does not change the Hamiltonian structure
of the system.
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the canonical transformation that leads to the pairs (Ik, φk) are in practice very difficult
questions. In case the system is integrable and one knows the action-angle pairs, the
statement above is part of the Liouville-Arnold theorem [22].

If the systems of interest have more than one global conserved quantity, meaning that
not just the total energy is constant but other quantities Ok are as well, the region of
phase space on which the dynamics of the isolated system takes place is restricted to the
configurations that share the initial values of all these quantities. As said above this is a
space of 2n− n dimensions.

The solar-planet two body system is integrable. Therefore, the solar system, if one
neglects the interplanetary interactions is an integrable system as well.

3.1 Generalized Microcanonical Measure

The fact that the microcanonical measure

ρGME( ~X) = c−1

N
∏

k=1

δ(Ik( ~X)− ik) , (3.41)

with

c =

∫

d ~X
N
∏

k=1

δ(Ik( ~X)− ik) ≡ g(i1, . . . , iN) (3.42)

(and a possible N ! factor, with N the number of indistinguishable particles, accompanying
the definition of the density of states or volume of the available phase space, that we
ignore) is sampled asymptotically (iff the frequencies of the periodic motion on the torus

are independent, that is, ~k · ~ω = 0 for ~k = (k1, . . . , kN) with integer kk has the unique

solution ~k = 0) is ensured by the Liouville-Arnold theorem [22]. One can call this ensemble
the Generalized Microcanonical Ensemble (GME).

3.2 Generalized Canonical Measure

One can now construct the Generalized Canonical Ensemble (GCE), commonly called
Generalized Gibbs Ensemble (GGE), from the GME following the usual steps. The idea
is to look for the joint probability distribution of the n extensive (as for the Hamiltonian
in the usual case) constants of motion, P (i1, . . . , in)di1 . . . din and the construction goes
as follows.

Consider a system with volume V , divide it in two pieces with volumes V1 and V2, with
V = V1+V2, and values of the integrals of motion on the two partitions ik1 and ik2. If we
assume that the two systems are independent with the constraint that ik1 + ik2 = ik, i.e.
the additivity property for each integral of motion, the probability density of subsystem 1
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to get the ensemble of values ik1 is

P (i11, . . . , in1) ∝
∫

∏

k

dik2 δ(ik − ik1 − ik2) g(i11, i12, . . . , in1, in2)

=

∫

∏

k

dik2 δ(ik − ik1 − ik2) g1(i11, . . . , in1) g2(i12, . . . , in2)

= g1(i11, . . . , in1) g2(i1 − i11, . . . , in − in1) (3.43)

Introducing now the entropy

S2(i1 − i11, . . . , in − in1) = kB ln g2(i1 − i11, . . . , in − in1) (3.44)

we have

P (i11, . . . , in1) ∝ g1(i11, . . . , in1) exp [k−1
B S2(i1 − i11, . . . , in − in1)]

≃ g1(i11, . . . , in1) exp

[

k−1
B S2(i1, . . . , in) + k−1

B

∑

k

∂ikS2(ik)(−ik1)

]

∝ g1(i11, . . . , in1) exp

[

−
∑

k

βkik1

]

(3.45)

with

kBβk ≡
∂S2(ik)

∂ik
. (3.46)

The Taylor expansion in the second line is justified by the assumption that system 1 is
much smaller than system 2 and, hence, the full system. After fixing the normalisation,
and erasing the subindex 1 for the selected subsystem,

P (i1, . . . , in) = Z−1(β1, . . . , βN) g(i1, . . . , in) exp

[

−
∑

k

βkik

]

(3.47)

with

Z(β1, . . . , βn) =

∫

∏

k

dik g(i1, . . . , in) exp

[

−
∑

k

βkik

]

. (3.48)

Let us recap the assumptions made:
(i) independence, g(i11, i12, . . . , in1, in2) = g1(i11, . . . , in1) g2(i12, . . . , in2),
(ii) additivity of all constants of motion ik = ik1 + ik2,
(iii) small system 1 (ik1 ≪ ik),
(iv) constant inverse ‘temperatures’ kBβk ≡ ∂ikS(i1, . . . , in).

Note that assumptions (i) and (ii) fail in systems with long-range interactions [16, 17].
Moreover, assumption (iii) implies that the iks should be extensive.
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As in cases with just one conserved quantity, it is convenient to interpret P as a
probability over position and momenta variables, and write

PGGE(q1, p1, . . . , qN , pN) = Z−1
GGE(β1, . . . , βN) exp

[

−
∑

k

βkIk(q1, p1, . . . , qN , pN)

]

(3.49)

or in a more compact form

PGGE( ~X) = Z−1
GGE(β1, . . . , βN) exp

[

−
∑

k

βkIk( ~X)

]

(3.50)

Concerning observables, the claim is then

A(t) ≡ lim
τ→∞

1

2τ

∫ t+τ

t−τ

dt A( ~Q(t), ~P (t)) =

∫ N
∏

i=1

d
∏

a=1

dqai dp
a
i A(

~Q, ~P ) pGGE( ~Q, ~P ) (3.51)

3.3 Generalised inverse temperatures

In the dynamic problem, the values of the parameters βk should be fixed by the values
of the constants of motion in the initial state

ik = Ik( ~X(t = 0)) (3.52)

and these should coincide with the statistical averages computed with the GGE

〈Ik〉GGE =

∫

d ~X PGGE( ~X) Ik( ~X) for all k (3.53)

if the dynamics is characterised by this measure.

3.4 Jaynes maximum entropy principle

The GGE probability distribution is sometimes justified advocating Jaynes maximum
Shannon entropy principle. This principle is nowadays widely used in inference problems.

The inference problem is defined as follows. Imagine that you have a random process,
the probability of which you do not know. However, you do know the average value of a
number, say m, of functions of this process. The idea is to use this (partial) information
to infer the probability distribution of the process under the assumption that it maximises
the Shannon entropy under the condition that the averages known are satisfied.

Let us explain how this construction work using an example, chosen for its notational
simplicity. Consider a random variable X that can take n discrete values, x1, . . . , xn with
probabilities p1, . . . , pn that we do not know. These probabilities have to be normalised
so we know the constraint

n
∑

i=1

pi = 1 . (3.54)
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Furthermore, we know the averages ck, with k = 1, . . . , m of m functions fk(X):

n
∑

i=1

pifk(xi) = ck for k = 1, . . . , m . (3.55)

The probabilities pi are then estimated by requiring that the Shannon entropy

SShannon = −
n
∑

i=1

pi ln pi (3.56)

be maximised under the constraints (3.54) and (3.55). The construction is then achieved
by imposing the maximisation on the Lagrangian

L = SShannon − (λ0 − 1)

(

n
∑

i=1

pi − 1

)

−
m
∑

k=1

λk

(

n
∑

i=1

pifk(xi)− ck

)

(3.57)

with m+ 1 Lagrange multipliers λ0, λ1, . . . , λm, and yields

pi = e−λ0−
∑m

k=1 λkfk(xi) =
e−

∑m
k=1 λkfk(xi)

Z
. (3.58)

The values of the Lagrange multipliers are fixed by the insertion of this expression in the
conditions (3.54) and (3.55).

In the case of the GGE that we presented above, the functions fk(xi) are the action
variables Ik and the Lagrange multipliers are the generalised inverses temperatures βk

determined by the values of the conserved quantities. Note that in the common case in
which the only conserved quantity is the energy one derives in this way the canonical
Boltzmann measure. (Of course, the subtleties, and problems linked, for example to the
long-range interacting problems are not detected in this derivation.)
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4 Reduced systems

In this section we will consider the reduction operation that consists in integrating
away a portion of the system and investigate which are the statistical properties of what
remains. We will distinguish the weak and strong coupling between the part retained and
the part integrated away.

4.1 Canonical setting

In this lecture we always think of the system of interest being coupled to a mega
environment with which it can exchange energy.

Environment

System
Interaction

Figure 4.2: Sketch of the system and bath coupling.

4.2 The reduced partition function

We analyze the statistical static properties of a classical canonical system in equilibrium
at inverse temperature β and itself formed by two sub-parts, one that will be treated as an
environment (not necessarily of infinite size) and another one that will be the (sub-)system
of interest. We study the partition function or Gibbs functional, Ztot:

Ztot[η] =
∑

conf env
conf syst

exp(−βHtot) (4.1)

where the sum represents an integration over the phase space of the full system, i.e. the
system’s and the environmental ones. We take

Htot = Hsyst +Henv +Hint . (4.2)

For simplicity we use a single particle moving in d = 1: Hsyst is the Hamiltonian of the
isolated particle,

Hsyst =
p2

2M
+ V (x) , (4.3)
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with p and x its momentum and position. Henv is the Hamiltonian of a ‘thermal bath’
that, for simplicity, we take to be an ensemble of N independent harmonic oscillators with
masses ma and frequencies ωa, a = 1, . . . , N

Henv =
N
∑

a=1

π2
a

2ma

+
maω

2
a

2
q2a (4.4)

with πa and qa their momenta and positions. This is indeed a very usual choice since it may
represent phonons. (These oscillators could be the normal modes of a generic Hamiltonian
expanded to quadratic order around its absolute minimum, written in terms of other pairs
of conjugate variables; the bath could be, for instance, a chain of harmonic oscillators with
nearest-neighbor couplings.) Hint is the coupling between system and environment. We
will restrict the following discussion to a linear interaction in the oscillator coordinates,
qa, and in the particle coordinate,

Hint = x
N
∑

a=1

caqa , (4.5)

with ca the coupling constants.
The generalization to more complex systems and/or to more complicated baths and

higher dimensions is straightforward. The calculations can also be easily generalized to
an interaction of the oscillator coordinate with a more complicated dependence on the
system’s coordinate, V(x), that may be dictated by the symmetries of the system at the
expense of modifying the counter-term. Non-linear functions of the oscillator coordinates
cannot be used since they render the problem unsolvable analytically (although, of course,
they can exist in Nature!).

Having chosen a quadratic bath and a linear coupling, the integration over the oscilla-
tors’ coordinates and momenta can be easily performed. This yields the reduced partition
function

Zred ∝
∑

conf syst

exp

[

−β

(

Hsyst −
1

2

N
∑

a=1

c2a
maω2

a

x2

)]

. (4.6)

We notice that a quadratic term in x has been generated by the integration of the qa
variables. The reduced partition function can be written as

Zred ∝
∑

conf syst

exp(−βH∗) with H∗ = Hsyst −
1

2

N
∑

a=1

c2a
maω2

a

x2 . (4.7)

At this level different choices can be made.

• One can argue that the coupling constants are small enough, say c2a = O(N−2), and
drop the last term to recover the partition function of the selected system. This is
a weak coupling limit between the selected system and the rest.
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• One can claim that c2a = O(N−1) and keep the modification of the Hamiltonian
of the reduced system as a relevant one (and start in this way a renormalisation
procedure by reproducing these steps many times).

• One can argue that, although the couplings are not small, say c2a = O(N−1), the
original Hamiltonian of the coupled system needs to be modified by adding a counter-
term in order to recover only the Hamiltonian of the selected system after integrating
away the oscillators. We explain this procedure in detail below.

In the last item above we propose to work with

Htot = Hsyst +Henv +Hint +Hcounter = Hsyst + H̃env (4.8)

with

Hcounter =
1

2

N
∑

a=1

c2a
maω2

a

x2 (4.9)

so that the combination of the environmental, interaction and counter-term Hamiltonians
take a rather simple and natural form

H̃env = Henv +Hint +Hcounter =
∑

a

maω
2
a

2

(

qa +
ca

maω2
a

x

)2

. (4.10)

In this way,

H∗ = Hsyst +Hcounter −
1

2

N
∑

a=1

c2a
maω2

a

x2 = Hsyst (4.11)

and
Zred[η] ∝

∑

conf syst

exp [−β (Hsyst)] = Zsyst . (4.12)

The counter-term Hcounter is chosen to cancel the term generated by the integration over
the oscillators and it avoids the renormalization of the coefficient of the quadratic term
in the potential that could have even destabilized the potential by taking negative values.
For a non-linear coupling Hint =

∑N
a=1 caqaV(x) the counter-term is

Hcounter =
1

2

N
∑

a=1

c2a
maω2

a

[V(x)]2 . (4.13)

The interaction with the reservoir does not modify the statistical properties of the particle
since Zred ∝ Zsyst, independently of the choices of ca, ma, ωa and N .

If one is interested in the dynamics of a coupled problem, the characteristics of the sub-
system that will be considered to be the bath have an influence on the reduced dynamic
equations found for the system, that are of generic Langevin kind. To take a weak coupling
limit c2a → 0 to get rid of the generated force might be problematic since it implies also a
very slow relaxation. One usually adds a counter-term in the dynamic formalism to get a
good Langevin for the system.
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5 Asymptotic states after quenches

Another field of research that is very active at present, motivated by analytic solutions
of (simple) quantum systems and experiments in cold atomic systems, is the evolution
following a quench. A quench is a rapid change in a parameter of the Hamiltonian, or
the full potential in the Hamiltonian, that can be taken to be instantaneous. By this
procedure one abruptly sets the system out of equilibrium and the question is what are
the statistical properties of an ensemble of systems prepared with respect to the initial
Hamiltonian and let evolve with the latter.

Take, as an example, a system constituted of a single point-like particle with mass
m, and initialise it in canonical equilibrium within a harmonic potential V0(x). The
probability distribution of the initial conditions is

P0(x0, p0) = Z−1 e−βi[
p20
2m

+V0(x0)] . (5.14)

Make now a quench in the potential that corresponds to V0 7→ V and, as solvable problem,
take V to be a simple harmonic potential. The Newton evolution of each of each initial
configuration is

x(t) = x0 cosωt+
p0
mω

sinωt (5.15)

p(t) = −mx0ω sinωt+ p0 cosωt (5.16)

The question is what is the probability distribution of the time-dependent phase space
points {x(t), p(t)}? Let us call fix time t and call y = x(t) and z = p(t). The probability
density of y, z at time t is

P (y, z, t)=

∫

dx0

∫

dp0 P0(x0, p0) δ(y − x0 cosωt−
p0
mω

sinωt)δ(z +mωx0 sinωt− p0 cosωt)

Let us use the second δ function to integrate over p0,

P (y, z, t)=

∫

dx0 P0

(

x0,
z

cosωt
+mωx0 tanωt

) 1

cosωt

× δ(y − x0 cosωt−
z +mx0ω sinωt

mω cosωt
sinωt)

The remaining δ function implies

y − z

mω
tanωt− x0 (cosωt+ tanωt sinωt) = y − z

mω
tanωt− x0

1

cosωt
= 0 (5.17)
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and we use it to integrate over x0. Indeed, replacing x0 = y cosωt− z
mω

sinωt and taking
care of the Jacobian

P (y, z, t)=P0

(

y cosωt− z

mω
sinωt,

z

cosωt
+mωy sinωt− z

sin2 ωt

cosωt

)

=P0

(

y cosωt− z

mω
sinωt, z cosωt+mωy sinωt

)

(5.18)

No quench

Let us check this formula in the case in which no quench is performed. The initial
potential has to be, then, harmonic V0(u) = mω2u2/2 and the equation above implies

lnZ + lnP (y, z, t)=− βi

2m
(z cosωt+mωy sinωt)2 − βi

2
mω2

(

y cosωt− z

mω
sinωt

)2

=− βi

2m
z2 − βi

2
mω2y2

The equilibrium distribution is conserved by the dynamics, as it should.

Harmonic to harmonic quench

Imagine now that the quench corresponds to a change in the spring parameter of the
quadratic potential ω0 7→ ω. The equation for P (y, z) implies

lnZ + lnP (y, z, t)=− βi

2m
(z cosωt+mωy sinωt)2 − βi

2
mω2

0

(

y cosωt− z

mω
sinωt

)2

and expanding the squares

lnZ + lnP (y, z, t)=− βi

2m

(

z2 cos2 ωt+m2ω2y2 sin2 ωt+ 2zmωy cosωt sinωt
)

−βi

2
mω2

0

(

y2 cos2 ωt+
z2

m2ω2
sin2 ωt− 2y

z

mω
cosωt sinωt

)

and one can now collect terms

lnZ + lnP (y, z, t)=−βi

2

(

(cos2 ωt+
ω2
0

ω2
sin2 ωt)

z2

m
+mω2(sin2 ωt+

ω2
0

ω2
cos2 ωt)y2

+2zymω(1 +
ω2
0

ω2
) cosωt sinωt

)

It is simpler to see the time evolution of the variances of the of the position and
momentum directly from the solutions to the equations of motion. One finds

σ2
x(t) = 〈x2(t)〉 = 〈x2

0〉 cos2 ωt+ 〈p20〉
1

m2ω2
sinωt (5.19)

σ2
p(t) = 〈p2(t)〉 = 〈x2

0〉 m2ω2 sin2 ωt+ 〈p20〉 cosωt (5.20)
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Replacing now the averages of the initial values

mω2σ2
x(t) = mω2〈x2(t)〉 = Ti

(

ω2

ω2
0

cos2 ωt+ sinωt

)

(5.21)

1

m
σ2
p(t) =

1

m
〈p2(t)〉 = Ti

(

cos2 ωt+
ω2

ω2
0

sin2 ωt

)

(5.22)

and one readily verifies that, as expected, the averaged total energy is conserved

〈E(t)〉 = mω2σ2
x(t) +

1

m
σ2
p(t) = Ti

(

1 +
ω2

ω2
0

)

, (5.23)

since each trajectory does conserve its initial energy. The averaged energy is, however,
different from the one right before the quench, 〈E(t = 0−)〉 6= 〈E(t = 0+)〉.
Non-Harmonic to harmonic quench

If we maintain the quadratic character of the Hamiltonian that drives the dynamics,
Newton equations remain solvable, with solution (5.15) and (5.16). The relation between
the final and initial probabilities, Eq. (5.18) implies

P (y, z, t) = Z−1
0 e−βi(z cosωt+mωy sinωt)2−βiV0(y cosωt− z

mω
sinωt) (5.24)

This form is obviously non quadratic.
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A Some useful formulæ

A.1 Stirling

Stirling formula for the factorial of a large number reads:

lnN ! ∼ N lnN − lnN , for N ≫ 1 . (A.1)

A.2 Moments

Introducing a source h that couples linearly to a random variable x one easily computes
all moments of its distribution p(x). Indeed,

〈 xk 〉 = ∂k

∂hk

∫

dx p(x)ehx
∣

∣

∣

∣

h=0

. (A.2)

A.3 Gaussian integrals

The Gaussian integral is

I1 ≡
∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 = 1 . (A.3)

It is the normalization condition of the Gaussian probability density written in the normal
form. One has

∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x = µ ,

∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x2 = σ2 . (A.4)

From (A.3) one has
∫ ∞

−∞

dx√
2πσ2

e−
x2

2σ2+
µx

σ2 = e
σ2µ2

2 . (A.5)

The generalization to N variables

IN ≡
∫ ∞

−∞

N
∏

i=1

dxie
− 1

2
~xtA~x+~xt~µ (A.6)
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with

~x =









x1

x2

. . .
xN









, ~µ =









µ1

µ2

. . .
µN









, A =









A11 . . . A1N

A21 . . . A2N

. . .
AN1 . . . ANN









,

and

−1

2
~xtA~x+ ~xt~µ (A.7)

is the most generic quadratic form. Note that A plays here the role σ−2 in the single
variable case. One can keep the symmetric part (A + At)/2 of the matrix A only since
the antisymmetric part (A−At)/2 yields a vanishing contribution once multiplied by the
vectors ~x and its transposed. Focusing now on a symmetric matrix, At = A, that we still
call A we can ensure that it is diagonalizable and all its eigenvalues are positive definite,
λi > 0. One can then define A1/2 as the matrix such that A1/2A1/2 = A and its eigenvalues
are the square root of the ones of A. Writing ~xtA~x = (~xtA1/2)(A1/2~x) = ~y~y, the integral
IN in (A.6) becomes

IN =

∫ ∞

−∞

N
∏

i=1

dyiJe
− 1

2
~yt~y+~yt(A−1/2µ) (A.8)

where J = det(A1/2)−1 = (detA)−1/2 is the Jacobian of the change of variables. Calling
~µ′ the last factor one has the product of N integrals of the type I1; thus

IN = (2π)N/2(detA)−1/2e
1
2
~µtA−1~µ (A.9)

Finally, the functional Gaussian integral is the continuum limit of the N -dimensional
Gaussian integral

~x ≡ (x1, . . . , xN) → φ(~x) (A.10)

and

I =

∫

Dφ e−
1
2

∫
ddxddy φ(~x)A(~x,~y)φ(~y)+

∫
ddx φ(~x)µ(~x) . (A.11)

The sum runs over all functions φ(~x) with the spatial point ~x living in d dimensions.
The first and the second term in the exponential are quadratic and linear in the field,
respectively. In analogy with the IN case the result of the path integral is

I ∝ e
1
2

∫
ddxddy µ(~x)A−1(~x,~y)µ(~y) (A.12)

where we ignore the proportionality constant. Indeed, this one depends on the definition of
the path-integral measure Dφ. Usually, the actual value of this constant is not important
since it does not depend on the relevant parameters of the theory. The inverse A−1 is
defined by

∫

ddy A−1(~x, ~y)A(~y, ~z) = δ(~x− ~z) . (A.13)
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A.4 Wick’s theorem

Take a Gaussian variable x with mean 〈 x 〉 = µ and variance σ2 = 〈 x2 〉 − 〈 x 〉2. Its
pdf is

p(x) = (2πσ2)−1/2 e−(x−µ)2/(2σ2) . (A.14)

All moments 〈 xk 〉 can be computed with (A.2). One finds

〈 ehx 〉 = e
h2σ2

2
+hµ (A.15)

and then

〈 xk 〉 = ∂k

∂hk
e

h2σ2

2
+µh

∣

∣

∣

∣

h=0

(A.16)

from where

〈 x 〉 = µ , 〈 x2 〉 = σ2 + µ2 ,
〈 x3 〉 = 3σ2µ+ µ3 , 〈 x4 〉 = 3σ4 + 6σ2µ2 + µ4

etc. One recognizes the structure of Wick’s theorem: given k factors x one organises them
in pairs leaving the averages µ aside. The simplest way of seeing Wick’s theorem in action
is by drawing examples.

The generalization to N Gaussian variables is immediate. Equation (A.15) becomes

〈 e~h~x 〉 = e
1
2
~hA−1~h+~h~µ (A.17)

and the generalization of (A.16) leads to

〈 xi 〉 = µi , 〈 xixj 〉 = A−1
ij + µiµj , (A.18)

etc. In other words, whereever there is σ2 in the single variable case we replace it by A−1
ij

with the corresponding indices.
The generalization to a field theory necessitates the introduction of functional deriva-

tives that we describe below. For completeness we present the result for a scalar field in
d dimensions here

〈 φ(~x) 〉 = µ(~x) , 〈 φ(~x)φ(~y) 〉 = A−1(~x, ~y) + µ(~x)µ(~y) , (A.19)

etc.

A.5 Functional analysis

A functional F [h] is a function of a function h : ~x → h(~x). The variation of a functional
F when one changes the function h by an infinitesimal amount allows one to define the
functional derivative. More precisely, one defines δF ≡ F [h+ δh]− F [h] and one tries to
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write this as δF =
∫

ddx α(~x)δh(~x) + 1
2

∫

ddxddy β(~x, ~y) δh(~x)δh(~y) + . . . and one defines
the functional derivative of F with respect to h evaluated at the spatial point ~x as

δF

δh(~x)
= α(~x) ,

δ2F

δh(~x)δh(~y)
= β(~x, ~y) (A.20)

etc. All usual properties of partial derivatives apply.

A.6 Fourier transform

We define the Fourier transform (FT) of a function f(~x defined in a volume V as

f̃(~k) =

∫

V

ddx f(~x) e−i~k~x (A.21)

This implies

f(~x) =
1

V

∑

~k

f̃(~k) ei
~k~x (A.22)

where the sum runs over all ~k with components ki satisfying ki = 2mπ/L with m an
integer and L the linear size of the volume V .

In the large V limit these equations become

f̃(~k) =

∫

V

ddx f(~x) e−i~k~x (A.23)

f̃(~x) =

∫

V

ddk

(2π)d
f(~k) ei

~k~x (A.24)

The Fourier transform of a real function f(~x) satisfies f̃ ∗(~k) = f̃(−~k).

B The saddle-point method

Imagine one has to compute the following integral

I ≡
∫ b

a

dx e−Nf(x) , (B.1)

with f(x) a positive definite function in the interval [a, b], in the limit N → ∞. It is clear
that due to the rapid exponential decay of the integrand, the integral will be dominated
by the minimum of the function f in the interval. Assuming there is only one absolute
minimum, x0, one then Taylor expands f(x) upto second order

f(x) ∼ f(x0) +
1

2
f ′′(x0)(x− x0)

2 (B.2)
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and obtains

I ∼ e−Nf(x0)

∫ b

a

dx e−N 1
2
f ′′(x0)(x−x0)2 = e−Nf(x0)[Nf ′′(x0)]

−1/2

∫ yb

ya

dy e−
1
2
(y−y0)2 , (B.3)

with y0 ≡
√

Nf ′′(x0)x0 and similarly for ya and yb. The Gaussian integral is just an error
function that one can find in Tables.

This argument can be extended to multidimensional integrals, cases in which there is
no absolute minimum within the integration interval, cases in which the function f is not
positive definite, etc.
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Papers

1. Inequivalence of ensembles in systems with long range interactions

Julien Barré, David Mukamel, Stefano Ruffo, Inequivalence of ensembles in a system
with long range interactions, cond-mat/0102036, Phys. Rev. Lett. 87, 030601 (2001).

We study the global phase diagram of the infinite range Blume-Emery-Griffiths model
both in the canonical and in the microcanonical ensembles. The canonical phase diagram
is known to exhibit first order and continuous transition lines separated by a tricritical
point. We find that below the tricritical point, when the canonical transition is first order,
the phase diagrams of the two ensembles disagree. In this region the microcanonical
ensemble exhibits energy ranges with negative specific heat and temperature jumps at
transition energies. These results can be extended to weakly decaying nonintegrable
interactions.

D. Mukamel, S. Ruffo, N. Schreiber, Breaking of ergodicity and long relaxation times
in systems with long-range interactions, cond-mat/0508604.

The thermodynamic and dynamical properties of an Ising model with both short range
and long range, mean field like, interactions are studied within the microcanonical ensem-
ble. It is found that the relaxation time of thermodynamically unstable states diverges
logarithmically with system size. This is in contrast with the case of short range in-
teractions where this time is finite. Moreover, at sufficiently low energies, gaps in the
magnetization interval may develop to which no microscopic configuration corresponds.
As a result, in local microcanonical dynamics the system cannot move across the gap,
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leading to breaking of ergodicity even in finite systems. These are general features of sys-
tems with long range interactions and are expected to be valid even when the interaction
is slowly decaying with distance.

Alessandro Campa, Andrea Giansanti, David Mukamel, Stefano Ruffo Dynamics and
thermodynamics of rotators interacting with both long and short range couplings, cond-
mat/0510508.

The effect of nearest-neighbor coupling on the thermodynamic and dynamical proper-
ties of the ferromagnetic Hamiltonian Mean Field model (HMF) is studied. For a range
of antiferromagnetic nearest-neighbor coupling, a canonical first order transition is ob-
served, and the canonical and microcanonical ensembles are non-equivalent. In studying
the relaxation time of non-equilibrium states it is found that as in the HMF model, a class
of non-magnetic states is quasi-stationary, with an algebraic divergence of their lifetime
with the number of degrees of freedom N . The lifetime of metastable states is found to
increase exponentially with N as expected.

Takayuki Tatekawa, Freddy Bouchet, Thierry Dauxois, Stefano Ruffo, Thermodynam-
ics of the self-gravitating ring model, Phys. Rev. E 71 (2005) 056111, cond-mat/0501583.

We present the phase diagram, in both the microcanonical and the canonical ensemble,
of the Self-Gravitating-Ring (SGR) model, which describes the motion of equal point
masses constrained on a ring and subject to 3D gravitational attraction. If the interaction
is regularized at short distances by the introduction of a softening parameter, a global
entropy maximum always exists, and thermodynamics is well defined in the mean-field
limit. However, ensembles are not equivalent and a phase of negative specific heat in the
microcanonical ensemble appears in a wide intermediate energy region, if the softening
parameter is small enough. The phase transition changes from second to first order
at a tricritical point, whose location is not the same in the two ensembles. All these
features make of the SGR model the best prototype of a self-gravitating system in one
dimension. In order to obtain the stable stationary mass distribution, we apply a new
iterative method, inspired by a previous one used in 2D turbulence, which ensures entropy
increase and, hence, convergence towards an equilibrium state.

2. Equilibrium phase transitions

G. Fletcher, A mechanical analog of first- and second-order phase transitions, Am. J.
Phys. 65, 74 (1997).

A mechanical model that exhibits first- and second-order phase transitions is analyzed.
The possible configurations are found first by using Newtonian mechanics and second by
determining the minimum of the effective potential energy taken from the Lagrangian.
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A comparison is made between the effective potential energy method and the Landau
theory of phase transitions. Phase diagrams are obtained for the mechanical system and
are compared with those of a ferromagnet.

D. Boyanovsky, H. J. de Vega, D. J. Schwarz, Phase transitions in the early and the
present Universe, to appear in Ann. Rev. Nucl. Part. Sci 2006, hep-ph/0602002.

The evolution of the Universe is the ultimate laboratory to study fundamental physics
across energy scales that span about 25 orders of magnitude: from the grand unification
scale through particle and nuclear physics scales down to the scale of atomic physics. The
standard models of cosmology and particle physics provide the basic understanding of
the early and present Universe and predict a series of phase transitions that occurred in
succession during the expansion and cooling history of the Universe. We survey these
phase transitions, highlighting the equilibrium and non-equilibrium effects as well as their
observational and cosmological consequences. We discuss the current theoretical and ex-
perimental programs to study phase transitions in QCD and nuclear matter in accelerators
along with the new results on novel states of matter as well as on multi- fragmentation
in nuclear matter. A critical assessment of similarities and differences between the condi-
tions in the early universe and those in ultra- relativistic heavy ion collisions is presented.
Cosmological observations and accelerator experiments are converging towards an un-
precedented understanding of the early and present Universe.

An improved apparatus for demonstrating first- and second-order phase transitions:
Ball bearings on a rotating hoop, Richard V. Mancuso and Guy A. Schreiber, Am. J.
Phys. 73, 366 (2005)

A working mechanical model for first- and second-order phase transitions and the cusp
catastrophe, Richard V. Mancuso Am. J. Phys. 68, 271 (2000).

We have modified a toy to demonstrate first- and second-order phase transitions. The
toy consists of a ball constrained to move on a rotating hoop. Analysis of the equilibrium
positions of the ball as a function of the angular velocity and location of the axis of
rotation shows that this system contains a cusp catastrophe.

On water, steam, and string theory, Christof Schmidhuber Am. J. Phys. 65, 1042
(1997)

At a pressure of 220 atm and a temperature of 374 ◦C there is a second-order phase
transition between water and steam. Understanding it requires a key concept of both
condensed matter and elementary particle physics: the renormalization group. Its basic
ideas are explained with images from computer simulations of the lattice gas model. Then
I briefly review how the renormalization group is used to compute critical coefficients for
the water?steam phase transition. The results of this calculation are in good agreement
with experiment. Finally, some applications in particle physics and string theory are
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mentioned.

A hand-held demonstration of cosmological phase transitions, David Lange, Marc Sher,
Joel Sivillo, and Robert Welsh, Am. J. Phys. 61, 1049 (1993).

Illustrating phase transitions with soap films, David R. Lovett and John Tilley, Am. J.
Phys. 59, 415 (1991).

First-order and second-order phase transitions are demonstrated using soap-film mod-
els. The models consist of two-dimensional parallel plates or three-dimensional frame-
works in which film patterns are maintained. By making the sizes of the frameworks
variable, it is possible to induce switching between film patterns analogous to transi-
tions between phases. These phase changes are discussed thermodynamically and using a
catastrophe theory model.

A simple geometrical model of spontaneous symmetry breaking, P. K. Aravind, Am. J.
Phys. 55, 437 (1987).

A common, everyday phenomenon has a geometrical aspect that, in some respects, is
analogous to a second-order phase transition. Concepts such as spontaneous symmetry
breaking, order parameter, critical point, and critical exponent can thus be exhibited in
a purely geometrical context. The purpose of the model, which is entirely pedagogical,
is to illustrate in an elementary and amusing way some of the concepts associated with
phase transition theory.

The self-gravitating gas

H. J. de Vega, N. G. Sanchez, Statistical Mechanics of the Self-Gravitating Gas: Ther-
modynamic Limit, Unstabilities and Phase Diagrams, Comptes Rendus Physique 7 (2006)
391-397, astro-ph/0601600.

We show that the self-gravitating gas at thermal equilibrium has an infinite volume
limit in the three ensembles (GCE, CE, MCE) when (N, V ) → ∞, keeping N/V 1/3 fixed,
that is, with η = Gm2N/[V 1/3T ] fixed. We develop MonteCarlo simulations, analytic
mean field methods (MF) and low density expansions. We compute the equation of state
and find it to be locally p(r) = TrhoV (r), that is a local ideal gas equation of state.
The system is in a gaseous phase for η < ηT = 1.51024... and collapses into a very
dense object for η > ηT in the CE with the pressure becoming large and negative. The
isothermal compressibility diverges at η = ηT . We compute the fluctuations around mean
field for the three ensembles. We show that the particle distribution can be described by
a Haussdorf dimension 1 < D < 3.

H. J. de Vega, N. Sanchez, Statistical Mechanics of the self-gravitating gas: thermody-
namic limit, phase diagrams and fractal structures, Lecture given at the 7th. Paris Cos-
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mology Colloquium, Observatoire de Paris, June 11-15, 2002 and at the 9 th Course of the
International School of Astrophysics ‘Daniel Chalonge’, Palermo, Italy, 7-18 September
2002, NATO ASI, astro-ph/0505561.

We provide a complete picture to the self-gravitating non-relativistic gas at thermal
equilibrium using Monte Carlo simulations, analytic mean field methods (MF) and low
density expansions. The system is shown to possess an infinite volume limit in the grand
canonical (GCE), canonical (CE) and microcanonical (MCE) ensembles when (N, V )− >
∞, keeping N/V 1/3 fixed. We compute the equation of state (we do not assume it as
is customary in hydrodynamics), as well as the energy, free energy, entropy, chemical
potential, specific heats, compressibilities and speed of sound; we analyze their properties,
signs and singularities. All physical quantities turn out to depend on a single variable
η = Gm2N/[V 1/3T ] that is kept fixed in the N− > ∞ and V− > ∞ limit. The system
is in a gaseous phase for η < ηT and collapses into a dense object for η > ηT in the CE
with the pressure becoming large and negative. At η ≃ ηT the isothermal compressibility
diverges and the gas collapses. Our Monte Carlo simulations yield ηT ≃ 1.515. We find
that PV/[NT ] = f(η). The function f(η) has a second Riemann sheet which is only
physically realized in the MCE. In the MCE, the collapse phase transition takes place in
this second sheet near ηMC = 1.26 and the pressure and temperature are larger in the
collapsed phase than in the gaseous phase. Both collapse phase transitions (in the CE and
in the MCE) are of zeroth order since the Gibbs free energy has a jump at the transitions.

H. J. de Vega, N. Sanchez, The Cluster Expansion for the Self-Gravitating gas and the
Thermodynamic Limit, Nucl. Phys. B 711 (2005) 604-620, astro-ph/0307318.

We develop the cluster expansion and the Mayer expansion for the self-gravitating
thermal gas and prove the existence and stability of the thermodynamic limit N, V to infty
with N/V 1/3 fixed. The essential (dimensionless) variable is here η = [Gm2N ]/[V 1/3T ]
(which is kept fixed in the thermodynamic limit). We succeed in this way to obtain
the expansion of the grand canonical partition function in powers of the fugacity. The
corresponding cluster coefficients behave in the thermodynamic limit as [η/N ]j−1cj where
cj are pure numbers. They are expressed as integrals associated to tree cluster diagrams. A
bilinear recurrence relation for the coefficients cj is obtained from the mean field equations
in the Abel form. In this way the large j behaviour of the cj is calculated. This large j
behaviour provides the position of the nearest singularity which corresponds to the critical
point (collapse) of the self-gravitating gas in the grand canonical ensemble. Finally, we
discuss why other attempts to define a thermodynamic limit for the self-gravitating gas
fail.

H. J. de Vega, J. A. Siebert, The Self-Gravitating Gas in the Presence of Dark Energy:
Monte-Carlo Simulations and Stability Analysis, Nucl. Phys. B 726 (2005) 464-480,
astro-ph/0410147.
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The self-gravitating gas in the presence of a positive cosmological constant Lambda
is studied in thermal equilibrium by Monte Carlo simulations and by the mean field
approach. We find excellent agreement between both approaches already for N = 1000
particles on a volume V [The mean field is exact in the infinite N limit]. The domain of
stability of the gas is found to increase when the cosmological constant increases. The
particle density is shown to be an increasing (decreasing) function of the distance when
the dark energy dominates over self-gravity (and vice-versa).We confirm the validity of
the thermodynamic limit: N, V− > ∞ with N/V 1/3 and ΛV 2/3 fixed. In such dilute
limit extensive thermodynamic quantities like energy, free energy, entropy turn to be
proportional to N . We find that the gas is stable till the isothermal compressibility
diverges. Beyond this point the gas becomes a extremely dense object whose properties
are studied by Monte Carlo.

4. Monte Carlo methods

A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sam-
pling, D. P. Landau, Shan-Ho Tsai, and M. Exler, Am. J. Phys. 72, 1294 (2004).

We describe a Monte Carlo algorithm for doing simulations in classical statistical
physics in a different way. Instead of sampling the probability distribution at a fixed
temperature, a random walk is performed in energy space to extract an estimate for the
density of states. The probability can be computed at any temperature by weighting the
density of states by the appropriate Boltzmann factor. Thermodynamic properties can
be determined from suitable derivatives of the partition function and, unlike "standard"
methods, the free energy and entropy can also be computed directly. To demonstrate
the simplicity and power of the algorithm, we apply it to models exhibiting first-order or
second-order phase transitions.

Monte Carlo Calculations as an Aid in Teaching Statistical Mechanics, D. P. Landau,
R. Alben

A simple Monte Carlo sampling method is used to illustrate the principles of statistical
mechanics as applied to a simple magnetic system. The concepts of ensembles, statistical
averages, and responses are clarified particularly with respect to the role of statistical
fluctuations. The basic properties of magnetic phase transitions are also demonstrated
using small systems of interacting moments.

A simple algorithm for the transport of gamma rays in a medium, F. Arqueros and G.
D. Montesinos, Am. J. of Phys. 71 38-45 (2003).

A simple Monte Carlo algorithm for the simulation of the passage of gamma rays of
about 1 MeV in a medium is presented. In this energy range the only relevant processes are
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Compton scattering and photoelectric absorption. The algorithm allows the visualization
of the photon tracks as well as the calculation of many quantities of interest. Several
problems for a layer and a cylinder are proposed. In particular, the energy transferred to
electrons in a water cylinder as a function of depth and the line shape of a NaI scintillator
is calculated.

Study of radiation-matter interaction processes below 1 MeV from simulated data, Fer-
nando Arqueros and Sergio Martinez, American Journal of Physics 60, 232-238 (1992).

The passage of 1-MeV photons through thin and thick foils of Al and Pb has been
simulated. The results have been used to show the basic properties of the dominant
effects in radiation-matter interaction processes at energies just below 1 MeV. For the
interpretation of the data it is necessary to handle total and differential cross sections of
the involved processes, as well as the conservation laws, mainly of the Compton effect,
whose phenomenology is studied in depth. In particular, the effect of multiple interactions
in thick foils is studied and some results of the simulation are compared with suggested
theoretical approaches.

Interdisciplinary applications of computational statistical physics, Dietrich Stauffer,
Am. J. of Phys. 67, 1207-1211 (1999).

Biological and financial applications of computational methods in statistical physics
are discussed. Examples are given of evolutionary models of sexual reproduction and
stock markets.

Monte Carlo estimations of e, P. Mohazzabi, Am. J. of Physics 66, 138-14 (1998).

Three physical processes and the corresponding Monte Carlo algorithms are outlined,
in which the number e, the base of the natural logarithm, can be obtained. The value of
e is estimated in each case, and the three algorithms are compared.

Updating Monte Carlo algorithms, J. R. Drugowich de Felício, Valter L. Líbero, Am.
J. Phys, 64, 1281-1285 (1996).

Using the long-range Ising model, we present modern Monte Carlo techniques2̆014single
and multiple histogram and entropic sampling2̆014which permit increasing the amount
of information obtained from a simulation. Numerical results for the density of states,
mean energy and specific heat are compared with exact calculations, easily handled in
this case. As a consequence of the simplicity of the model, the ability of those methods
to generate continuous plots of thermodynamical quantities can be appreciated even by
students taking basic courses of statistical physics.

Compton scattering, the electron mass, and relativity: A laboratory experiment, P. L.
Jolivette and N. Rouze, American Journal of Physics 62, 266-271 (1994).
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Compton scattering in a semiconductor detector is used to “discover” the relativistic
relation between energy and momentum and to demonstrate the dependence of p, E
and gamma on beta. The motivation is to measure the (rest) mass of the electron, and
this can be done to within 1 keV with a commonly available set of gamma ray sources.
To determine precisely where the Compton edge occurs in a spectrum, a Monte Carlo
calculation of detector response is described which also helps the student to understand
the physics of the detection process.
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