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Abstract
Just over 50 years ago, Pierre Hohenberg developed a rigorous proof of the non-existence of
long-range order in a two-dimensional superfluid or superconductor at finite temperatures.
The proof was immediately extended by Mermin andWagner to the Heisenberg ferromagnet
and antiferromagnet, and shortly thereafter, by Mermin to prove the absence of translational
long-range order in a two-dimensional crystal, whether in quantum or classical mechanics.
In this paper, we present an extension of the Hohenberg–Mermin–Wagner theorem to give a
rigorous proof of the impossibility of long-range ferromagnetic order in an itinerant electron
system without spin-orbit coupling or magnetic dipole interactions. We also comment on
some situations where there are compelling arguments that long-range order is impossible
but no rigorous proof has been given, as well as situations, such as a magnet with long range
interactions, or orientational order in a two-dimensional crystal, where long-range order can
occur that breaks a continuous symmetry.
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1 Introduction

In the fall of 1966, Pierre Hohenberg submitted an article to Physical Review in which he
demonstrated a rigorous proof of the impossibility of long-range order in a superfluid or
superconductor at non-zero temperature, in either one or two dimensions. The paper was
received by the journal on October 24, but did not appear in print until June 1967 [1].

A week before Pierre’s submission, David Mermin and Herbert Wagner submitted a
manuscript to Physical Review Letters, which contained a similar proof of the absence of
long-range order in one and two dimensions for a Heisenberg ferromagnet or antiferromag-
net, with SU(2) symmetry, or a magnetic system with U(1) symmetry and an order parameter
perpendicular to the symmetry axis [2]. The principal difference between the two papers is
that Mermin and Wagner discussed spins on a lattice, whereas Hohenberg was concerned
with bosons or fermions in the continuum.
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Mermin and Wagner clearly state in their paper that they were aware of Pierre’s earlier
work, and that their own work was, in fact, inspired by discussions with Pierre. However, due
to the rapid processing by Physical Review Letters, the Mermin–Wagner paper appeared in
print in November, 1966, some 6 months before Pierre’s. As a result, Pierre’s precedence has
been frequently ignored. The two closely related proofs, which should be properly referred to
collectively as the “Hohenberg–Mermin–Wagner theorem”, have, unfortunately, been very
often cited in the literature simply as the “Mermin-Wagner theorem”. One can only hope that
authors will be more careful in the future, and that Pierre’s role will no longer be neglected.

In the present article, written some 50 years later, I make a few remarks about what
Hohenberg-Mermin-Wagner theorem (HMW) does and does not imply. I shall also present
a proof of an extension of the HMW theorem to rule out rigorously the possibility of ferro-
magnetic order in a two-dimensional system of itinerant electrons, in the absence of terms
in the Hamiltonian that explicitly break the SU(2) spin symmetry.

2 Limitations of the Rigorous Theorem

2.1 Phase Transitions and Quasi-Long-Range Order

Hohenberg, in his 1967 paper, was careful to emphasize that the absence of true long-range
order did not rule out the possibility of superfluid transport at low temperatures, or of a sharp
phase transition as the temperature is raised. Furthermore, he was careful to note that there
were already numerous non-rigorous arguments against the existence of long-range order in
one- and two-dimensional systems where such order would break a continuous symmetry,
dating as far back as the 1930s [3–6].

At the time of Hohenberg’s writing, it was already understood that if one assumes that
the only important degree of freedom for a superfluid at low temperatures is the phase of the
superfluid order parameter, one can conclude that the pair correlation function 〈ψ†(r)ψ(0)〉
should fall off as a power law,∝ r−α where α → 0 as T → 0 [6]. The key assumption, here,
is that the amplitude of the Bose condensate can be written as

a(r) = a0e
iθ(r), (1)

where a0 is treated as a constant while the phase θ is allowed to vary in space. Symmetry
requires that the energy is unchanged if the phase is changed by a constant independent of
space, so the free energy cost of a spatial variation in the phase should have the form

δF = ρs

2

∫
d2r |∇θ |2, (2)

where ρs is a finite stiffness constant. This leads to the result that at temperature T , phase
fluctuations at wave vector k should have a variance proportional to T /(ρsk2), which implies
that the correlation function in real space, 〈[θ(r)− θ(0)]2〉, should diverge as (T /πρs) log r ,
for large r . Because the phase fluctuations have a Gaussian distribution, this implies in turn
that 〈

a(r)a∗(0)
〉 = e−〈[θ(r)−θ(0)]2〉/2 ∼ r−T /(2πρs ). (3)

It is now understood, following the work of Berezinskii, [7] of Kosterlitz and Thouless,
[8,9] and of Nelson and Kosterlitz, [10] that there will be a sharp transition temperature
TKT , such that for T > TKT , the correlation function falls off exponentially with distance,
while for T < TKT the correlation function will have power law fall off, commonly called
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quasi-long-range order, with an exponent α ≥ 3. By contrast, for the Heisenberg model, we
now understand that the order-parameter correlation function will decay exponentially with
distance at any non-zero temperature, and there will generally be no phase transition at finite
temperatures. The HMW theorem sheds no light on the question of whether quasi-long-range
order can exist in any particular system.

2.2 Long-Range Interactions

Hohenberg noted, in his original paper, that his theorem on the absence of long-range order
for a two-dimensional superfluid or superconductor would be unaffected if the interaction
between the particles included a long-range portion. By contrast, the argument for the absence
of long-range order in the Heisenberg ferromagnet depends crucially on the range of the
interaction. In particular, let J (r) be the coupling constant between spin pairs separated by
a distance r, and define second moments

Kαβ ≡
∑
r

rαrβ J (r), (4)

where α and β denote the two spatial directions. The argument for the non-existence of
long-range order, as given in the Mermin–Wagner paper requires that these second moments
be finite.

In the case of amagneticmodel which has only symmetry for spin rotations about one axis,
say the z-axis, one must distinguish between coupling constants J⊥(r) and J ‖(r) for spin
components parallel or perpendicular to the symmetry axis, respectively. Then, the analysis
of Mermin and Wagner rules out long-range order For the perpendicular spin components,
provided that the second moments for J⊥ are finite. It is not necessary to impose such a
condition on J ‖.

In fact, if the interactions are ferromagnetic and fall off with distance slower than 1/r4, so
that Kαα is infinite, we expect that long-range ferromagnetic order should indeed be possible
in two dimensions, at sufficiently small, but non-zero, temperatures.

2.3 Bond Orientation in a Two-Dimensional Crystal

It has sometimes been suggested that the HMW theorem and its generalizations rule out the
possibility of long-range order at T 
= 0 in any two-dimensional system where the order
parameter would break a continuous symmetry. However, this is not completely correct. We
have already noted that long range order can occur in a Heisenberg magnet with suitably
long-ranged interactions. In a very different counter-example, one can have long-range ori-
entational order in a two-dimensional crystal, even if there are only short range interactions
among the constituent particles [11].

The possibility of long-range orientational order should be contrasted with translational
order parameters, for which only quasi-long-range order is possible in two dimensions. This
distinction can be understood in a non-rigorous way by considering the effect of thermally
excited phonons, which will be present even in an ideal harmonic crystal, with no defects of
any kind. We may define a set of translational order parameters by

	G(r) = eiG·r[ρ(r) − ρ̄], (5)

whereG is one of the fundamental reciprocal lattice vectors of the crystal, ρ(r) is the particle
density at point r, and ρ̄ is the average density. Then, the effect of thermal phononsfluctuations
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in the long wavelength vibrational modes is to cause the order parameter correlations to fall
off at large distances as

〈	G(r)	−G(0)〉 ∼ r−TG2/κ , (6)

where κ depends on the elastic constants of the crystal.
If the crystal symmetry is such that each atom hasm nearest neighbors in equilibrium, we

may define an orientational order parameter as

�(r) = 〈eimθ(r)〉av, (7)

where θ is the orientation angle of a bond relative to the x-axis, and 〈〉av denotes an average
over the m nearest neighbors of the atom at point r. (For a simple triangular lattice, we have
m = 6.) Because long-wavelength phonons couple much more weakly to orientational order
than to translational order, phonons by themselves do not prevent the existence of a non-zero
expectation value of 〈�〉 independent of r [11]. If we denote the displacement field produced
by a long-wavelength lattice distortion by u(r), then the associated rotation will be given by
δθ = ∇ ×u. Consequently, the thermal fluctuations in θ will be smaller than the fluctuations
in u by a factor of k at long wavelengths.

For a real crystal, one should consider the role of anharmonic terms and the possibility
of defects such as dislocations. While the primary effect of anharmonic terms is only to
renormalize the values of the elastic constants controlling the phonons at long wavelengths,
the presence of un-paired dislocations would have a much larger effect than phonons on both
orientational and translational order. However, isolated dislocations have a logarithmically
diverging energy in two dimensions, so dislocations should only exist as bound pairs at
low temperatures, which will only lead to a small additional renormalization of the elastic
constants at low temperatures.

It as been proposed that there can be a temperature range where unbound dislocations
exist, but free disclinations are not yet possible [12]. In this temperature range, the system
will behave like a liquid crystal: correlations of the translational order parameters will fall
off exponentially with distance, but there will be power law fall-off for correlations of the
orientational order parameter. This behavior of the orientational correlation function may
be understood because, in the liquid-crystal phase, fluctuations in the orientational order
have a free-energy cost proportional to the square of the gradient of �, in contrast with the
solid phase, where a periodic fluctuation in� has a free-energy cost independent of the wave
vector. At the top of this temperature range, there would be a second transition, to an isotropic
liquid phasewhere unpaired disclinations occur and there is exponential decay of correlations
for both orientational and translational order. Evidence for the existence of the liquid-crystal
hexatic phase, for suitable forms of the inter-particle interaction, has been found in computer
simulations and in experiments on colloidal particles [13,14].

From a more fundamental point of view, the reason the HMW theorem cannot be used to
rule out long range orientational order at low temperatures in this system is that the rotation
symmetry broken by the long-range bond orientation involves a rotation in space of the
positions of all atoms in the system. In such a rotation, the displacement of an atomwill grow
linearly with the distance from the origin. Consequently, the generator of these rotations
cannot be written as an unweighted sum of local operators, as was the case for the symmetry
generators in the magnetic and superfluid systems.
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2.4 TetheredMembranes

An interesting result for orientational correlations has been found in a model first proposed
by Nelson and Pelliti in 1987, which is a model for a suspended elastic membrane under zero
tension [15,16], Consider the effects of thermal fluctuations about a ground state in which the
membrane lies in the x–y plane. At least for small fluctuations, we may define the state of the
system by specifying a set of three functions, ux (x, y), uy(x, y), f (x, y), which describe,
respectively, the in-plane and out-of-plane displacements of the point originally at (x, y, 0).
For small displacements, the associated energy cost will be have the form

δE ≈ 1

2

∫
dxdy

[
κ(∇2 f )2 + 2μui j ui j + λu2i i

]
, (8)

where κ is a bending modulus, μ and λ are the in-plane elastic constants, and ui j is the strain
tensor, given by

ui j ≈ 1

2

[
∂i u j + ∂ j ui + (∂i f )(∂ j f )

]
. (9)

We shall be interested in fluctuations in the orientation of the membrane, defined by the
local normal to the surface, n̂(x, y), whichmay bewritten to lowest order in the displacements
as

n̂ = ẑ − ∇ f , (10)

where ẑ is a unit vector in the z-direction. If one were to neglect the terms involving the
gradients of f in Eq. (9), there would be no coupling between the in-plane and out of plane
displacements, and fluctuations in f would behave as 〈| fk|2〉 ∝ T /κk4, for k → 0. This
would imply 〈|δn̂|2〉 ∝ T /κk2 so that the mean square fluctuations in the orientation at
a given point would diverge, for any T > 0. However, the situation is changed when we
take into account the non-linear terms in the energy that result from coupling between f
and ui . These terms lead to a renormalization of the bending constant κ , which diverges for
k → 0, and which removes the divergence of fluctuations in n̂. As a result, one predicts that
long-range orientational order will be preserved at low non-zero temperatures [16].

2.5 Question of Order at T = 0

The HMW theorem has nothing to say about the existence or non-existence of long-range
order in a quantummechanical system at T = 0.Yet, non-rigorous arguments similar to those
invoked at finite temperatures, suggest that long-range order is in fact impossible at T = 0 in
many circumstances. For example, it is strongly believed that the superfluid order parameter
of a one-dimensional collection of bosons can have at most quasi-long-range order at T = 0
[17]. If one makes the assumption that the spectrum of fluctuations at long wavelengths
is dominated by a single phonon mode, then one can easily make the argument, based on
the quantum mechanical zero-point motion of the long-wave length phonons, that the phase
fluctuations will diverge even at T=0, ruling out the possibility of long-range order. As far
as I am aware, however, there is no generalization of the HMW theorem giving a rigorous
proof of the absence of long range order in this case.

A related situation is that of a two-dimensional fluid of bosons with a long-range repulsive
interaction. Suppose that the repulsive force between two atoms falls off at long distances
proportional to 1/r y , with y < 3 . (One needs to include a neutralizing uniform background
in this case, in order to keep the energy density finite and the particle density uniform.) The
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long-range repulsion leads to a phonon spectrum with ωk ∝ k(y−1)/2, for k → 0, and zero-
point phase fluctuations will have the form

〈|θk |2〉 ∝ ωkk
−2 ∝ k(y−5)/2. (11)

If y ≤ 1, the integral
∫
d2k〈|θk |2〉 will diverge, which implies that long-range superfluid

order is impossible, even at T = 0. Although this argument seems compelling, I am not
aware of a rigorous proof that fluctuations must be dominated by a single phonon mode at
long wavelengths, and I am not aware of a rigorous proof of the impossibility of long-range
order in this case.

We remark that the borderline case y = 1 is the situation of a two-dimensional Coulomb
interaction, were the interaction potential behaves as a logarithm of the distance. In this case,
the phonon (or plasmon) frequency is non-zero and finite for k → 0. For y < 1, the frequency
diverges for k → 0.

3 Extension of HMW to Itinerant Ferromagnets

The Mermin-Wagner paper discussed only the case of spins on a lattice. However, a gen-
eralization of the HMW argument can be used to rule out rigorously the possibility of
ferromagnetism at T 
= 0 in any two-dimensional electronmodel without spin-orbit coupling
or magnetic dipole interactions, which would destroy SU (2) symmetry in the microscopic
Hamiltonian. In particular, the model could employ any reasonable spin-independent two-
body interaction and it could include an an arbitrary periodic one-body potential.

The proof goes as follows. As in the HMW papers, we make use of the inequality
〈{A, A†}〉 ≥ TχA,A, (12)

where χA,A is the linear response coefficient describing the expectation value of the operator
A produced by a static perturbation of the form λA+ h.c. The inequality follows directly
from the quantum version of the fluctuation dissipation theorem.

Here, we consider a system of electrons with an unperturbed Hamiltonian of the form
H0 = K +V − hSx , where the potential V is a spin-independent function of the positions of
the particles, K is the kinetic energy, Sx is the x-component of the total spin, and h is a weak
magnetic field that is allowed to vanish as the system size is taken to infinity. We assume
that the system is in a ferromagnetic state with a finite magnetization s0x , aligned in the in
the x-direction by the infinitesimal magnetic field h. We choose A to be sy(k), the Fourier
amplitude of the y-component of the spin density at wave vector k.

We now apply a weak perturbation of the form (−λA+ h.c.), with λ real and positive, and
investigate the energy change when the entropy is held fixed. To lowest order in λ, this will
be given by

δE = −|λ|2χA,A (13)

We can establish a variational upper bound to δE by using a trial state where every eigen-
function of H0 is multiplied by the unitary operator

U = e−iηQ, (14)

where η is a real variational parameter, and

Q = 2
∫

d2r sz(r) cos(k · r) = [sz(k) + sz(−k)]. (15)
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In the long wavelength limit, U will produce a spatially-varying rotation of the state about
the z-axis by an angle

θ(r) = 2η cos(k · r). (16)

This will clearly lead to a non-zero value of 〈sy〉, given by

〈sy〉 = 2s0xη cos(k·)r. (17)

The interaction of thiis magnetization with the applied perturbation will then give a contri-
bution to the energy given by

δE1 = −2ηλs0x�, (18)

where � is the area of the system.
The energy cost of the spatially-varying imposed rotation will be given by

δE2 = 〈
U−1[H0,U ]〉 , (19)

where the expectation value is taken in the thermodynamic ground state of H0. Since a
uniform rotation costs no energy in the limit where the uniform field h is taken to zero, we
would expect that δE2 will depend only on gradients of the rotation, Taking into account
symmetries in the sign of η and in the direction of k, we would expect that the energy cost
should be proportional to η2k2. Indeed we can calculate this energy cost precisely and verify
this result.

Expanding U in powers of η, we find that to lowest non-vanishing order

δE2 = η2

2
〈Q[H0, Q]〉 . (20)

The operator sz(r) is one-half the difference in densities of spin up and spin down particles
at point r, so it clearly commutes with the potential energy, which is a function of the density
operators at various points. Consequently, we need only consider the commutator of U with
the kinetic energy K . Following a similar procedure as is used in the standard derivation of
the f -sum rule, one finds that

δE2 = η2k2n�

m
, (21)

where n is the electron density and m the electron mass. By the variational principal, we
know that δE ≤ δE1+δE2, so we get the best upper bound to δE by choosing η to minimize
the right-hand side of this expression. This gives

δE ≤ −λ2m�

nk2
(s0x )

2, (22)

and, using (12) and (13),

〈|sy(k)|2〉 ≥ T�

nk2
(s0x )

2. (23)

We next define a locally averaged spin variable

s̄ =
∫

d2r f (r)sy(r) = �−1
∑
k

f̃ (k)sz(k), (24)
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where f is a gaussian with a finite spatial width a, and f̃ is the Fourier transform of f . In
the limit of an infinite system, we have

〈
s̄2

〉 = 1

(2π)2�

∫
d2k| f̃ (k)|2 〈|sy(k)|2〉 , (25)

which, in view of Eq. (23), will be infinite if s0x 
= 0. But this is physically impossible. A
large value of |s̄| requires that the number of electrons Na in the region of size a must be at
least as large as |s̄|a2. But for large densities, the kinetic energy per electron in the region will
be at least of order Na/(ma2). Therefore if 〈s̄2〉 is infinite, the kinetic energy must also be
infinite. The Coulomb repulsion between electrons at short distances will only make things
worse.

It follows that the magnetization s0x must be zero.

Note added in Proof Mohit Randeria has called my attention to a 1991 paper by Pitaevskii
andStringari [18],which, in fact, gives a rigorous proof of the impossibility of superfluid long-
range-order at zero temperature for a one-dimensional Bose system, subject to the assumption
that the compressibility is finite at long wavelengths. This paper also shows the impossibil-
ity of long-range crystalline order in a zero-temperature one-dimensional quantum system,
and the impossibility of antiferromagnetic order in a one-dimensional quantum Heisenberg
model, subject to the assumption of a finite value for the uniform magnetic susceptibility.
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