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2.4 Stability of Phases

The stable equilibrium state of a system may be homogeneous for a given set
of values of the intensive variables. But, there is no reason to suppose that
it remains homogeneous for every set of values of these intensive variables.

It is possible that for a given set of values of these variables, the single
phase becomes intrinsically unstable and spontaneously separates into two
homogeneous parts (phases) which are in mutual equilibrium with each
other.

Therefore, the problem of stability arises on two distinct levels: (a)
intrinsic stability of a single homogeneous state (a phase), and (b) mutual
stability of two co-existing phases of a system.

2.4.1 Intrinsic Stability of Homogeneous States

The basic extremum principle of thermostatics is that dS = 0 and d?S < 0
(i.e., entropy maximum principle), or, dF = 0 and d?E > 0 (i.e., energy
minimum principle) or the equivalent extremum principles in terms of the
various thermostatic potentials. The first part of this condition, namely,
that the entropy is extremum, has been exploited so far but the second part
of the condition, namely, the entropy is a mazimum remains to be used.
The latter decides whether or not a state of equilibrium is also state of
stable equilibrium.

We illustrate the derivation of the condition(s) for intrinsic stability by
studying a fluid; the corresponding conditions for a magnet can be written
down from the well known analogy between fluids and magnetic systems.
eIntrinsic Stability of a Homogeneous Fluid

Since dE = TdS — PdV + pdN, and since the energy E(S,V,N) is a
minimum in stable equilibrium,

(82E/8S?) = (0T /8S) > 0

and
(8E/8V?) = —(0P/OV) > 0
Therefore,
Cy =T(0S/0T)yn > 0 (2.1)
and !
kr = —(1/V)(OV/OP)rn >0 (2.2)

'Since, in general, C, > Cy, (2.1) implies that Cp > 0.
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The conditions (2.1) and (2.2) for intrinsic stability are special cases of
a general principle known as
Le Chatelier’s Principle: If a system is in stable equilibrium, then any
spontaneous change of its parameters must bring about processes which
tend to restore the system to equilibrium”. Suppose, the temperature T' of
the system A has increased spontaneously above that of its surroundings
separated from it by a diathermal wall. Then, a process of heat transfer
from A (which is at a higher temperature) to its surroundings must take
place. This would lead to a decrease in the energy of A (i.e., AE < 0). But,
the stability condition expressed by Le Chatelier’s principle requires that
this process, induced by the original temperature increase, is such that the
temperature is again decreased (i.e., AT < 0), so that AE and AT must
have the same sign and, hence, Cyy > 0, which is the stability condition we
have derived earlier from thermostatics. I leave it as an exercise to verify
that this condition (2.2) for intrinsic stability is also consistent with Le
Chatelier’s principle.

Solve problem 2.2.

eIntrinsic Stability of a Magnetic State

Drawing analogy between fluids and magnets, we know that the isother-
mal magnetic susceptibility x7 is the analogue of k7 while the specific heats
cym and cy are the analogues of ¢y and cp, respectively. Therefore, the con-
ditions for the intrinsic stability of magnetic systems are

cm >0, ¢cg >0, xr>0. (2.3)

Solve problem 2.3.

eGeneral Conditions for the Intrinsic Stability

Generalizing our observations in the preceeding sections we conclude
that for the intrinsic stability of a homogeneous state (phase) the response
functions must be positive. However, it is worth emphasizing that these
conditions were derived considering small variations in temperature, volume,
etc. and, therefore, the states satisfying these conditions are certainly in
"local equilibrium”. But, a state which satisfies these conditions need not
be the state of "global equilibrium” of the system. More detailed discussions
on this point will be presented later in section 2.5.
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2.4.2 Mutual Stability of Coexisting Phases

If the criteria for the intrinsic stability of a phase are not satisfied the
homogeneous system breaks up into two or more coexisting phases and,
thus, becomes inhomogeneous. This spontaneous separation is called a first
order phase transitions; the reason for this choice of terminology will become
clear a little later in this chapter. Instead of abstract discussion we develop
the theory for a fluid system; we can later generalize the results for any
arbitrary system through analogy.
eTwo Coexisting Phases

Since the two phases coexisting in equilibrium may be regarded as two
substances which can exchange heat, volume and matter, we must have

Th=Ty Pi=Py; p=pu

where T1, Py, u1 and Ty, Py, o are the temperatures, pressures and chemical
potentials, respectively, of the two phases.

Phase 1

Phase 2

Fig.2.4: Phases 1 and 2 coexist along the continuous curve.

But, because of the Gibbs-Duhem relation, only two of these three in-
tensive variables are independent. Suppose we take T and P as the inde-
pendent variables. Then, denoting the common temperature and common
pressure by T' and P, i.e., Ty =T, =T and P, = P, = P, the condition for
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equilibrium is
Ul(P’T) - ou2(P’T) (2.4)

Equation (2.4) implies that on the P — T plane two phases cannot coexist
in mutual equilibrium at all P and T. Since pu(P,T) and py(P,T) are
two different two-dimensional surfaces in the (u, P,T) space, equation (2.4)
describes the curve of their intersection and the two phases can coexist only
along this curve (see fig.2.4). Thus, if either the temperature or the pressure
for the two-phase equilibrium is given the other is completely determined.

Now recall that, from the definition of the Gibbs potential G = E—TS +
PV and the Euler relation ¥ = T'S — PV + puN for a single-component
simple fluid, the molar Gibbs potential ¢ = G/N 1is identical with p. In
fact, because of this relation, the chemical potential is sometimes referred
to as the molar Gibbs potential. From now onwards, we shall use x and g¢
interchangeably in our discussions in this section. The condition (2.4) can
also be written as

91(P,T) = gz(PaT) (2-5)

The two curves in fig.2.5(a) represent the molar Gibbs potentials of the
two phases as functions of temperature at a given fixed pressure Fy. Since,
entropy s = —(0g/0T)p must be positive, the slope of the ¢g(T') curve
has to be negative as in fig.2.5(a). The point of intersection of the two
curves satisfies the condition (2.5); the temperature Ty corresponding to
this intersection is the temperature at which the two phases can coexist in
equilibrium provided the common pressure of the two phases is the given
pressure Py. At any other temperature (for the given pressure P;) only one
or the other of the two phases can exist in equilibrium. Since the stable
equilibrium state corresponds to the lowest value of ¢ for a given T (and
P), in fig.2.5(a) the phase labelled by 1 is stable at T' < Tj and the phase
labelled by 2 is stable at T' > T,. Similarly, a section through the g-surfaces
in a plane of constant temperature is shown in fig.2.5(b); the slope of the
g(P) curve is positive as v = (0¢/0P)r must be positive.

Since in fig.2.5(a) at the point of intersection T' = Ty,

(0p1/0T ) py,1y > (Op2/0T) py 13
and since s = —(9p/0T) p, we have Tps1 < Tpsz, i.e.,

qg="To(sa —s1)>0
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where ¢ is the latent heat of the transition.
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Fig.2.5: A section through the g surfaces in a plane of (a) constant pressure;
(b) constant temperature.

If the phase transition is between the liquid and gaseous phases the latent
heat is called the heat of vaporization; if the transition is between the solid
and the liquid phases the latent heat is called the heat of fusion whereas for
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transitions between the solid and gaseous phases the corresponding latent
heat is called the heat of sublimation.

Thus, if you prepare a cup of tea, you first heat the water up to its
boiling temperature near 100 °C. From then on all additional heat is used to
transform liquid water into vapour while the temperature remains constant.
Only when all the liquid has evaporated, which takes much more energy than
to heat it to 100 degrees, does the temperature rise further and may start
a fire. Thus put the boiling water quickly over your tea leaves and thank
Nature for having invented latent heat.

Clausius-Clapeyron Equation

As stated before, at the two-phase coexistence P and T are not indepen-
dent of each other. Suppose, we treat T as the independent variable and P
to be a function of T'. Then, taking derivatives with respect T of both sides
of equation (2.4) we get

(0p1/0T)p + (Op1/OP)r(dP/dT) = (Op2/0T)p + (8p2/OP)7(dP/dT)

(2.6)
But, from the Gibbs-Duhem relation we have
(9u/0T)p = ~(S/N) = ~s (2.7)
and
(9u/0P)r = (V/N) = v. (2.8)
Substituting (2.7) and (2.8) into (2.6) we get
(dP/dT) = [(s1 — 52)/(v1 — v2)] = ¢/[T(v2 ~ v1)) (2.9)

where ¢ = T'(s2 — s1) is the latent heat of the transition. The equation (2.9)
is called the Clausius-Clapeyron equation. Thus, the Clausius-Clapeyron
equation can be interpreted as follows: consider any point (P,T) on the
phase equilibrium curve on the P — T plane. Then, the Clausius-Clapeyron
equation relates the slope of the phase-equilibrium curve at this point to the
entropy change As and the volume change Av of the substance in crossing
the line at this point, i.e., in undergoing a change of phase at this temper-
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ature and pressure.

Fig.2.6: Derivation of the Clausius-Clapeyron equation.

In order to gain further insight into the physical significance of the
Clausius-Clapeyron equation let us focus our attention on fig.2.6.

91(T,P) = ¢g2(T, P) at point A (2.10)
and
g1(T + dT, P + dP) = g5(T + dT, P + dP) at point B (2.11)
Expanding equation (2.11) around (7T, P) and using equation (2.10) we get
(091/0T)pdT + (891/0P)rdP

= (0¢2/0T ) pdT + (0g2/0P)rdP

which leads to the equation (2.6) as p and g are identical. It gives the
change in the pressure of the phases in equilibrium when the temperature
changes, i.e., the rate of change of pressure with temperature along the
curve of two-phase equilibrium in the P — T plane.

Now consider the specific case of the liquid-vapour phase transition in
a fluid. Since the molecular volume of the gas is always larger than that
of the liquid, and heat is absorbed in the passage from the liquid to the
vapour phase, we have (dT/dP) > 0, i.e., the boiling point always rises
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with the increase of pressure, a well known empirical fact. In contrast to
this, the melting point of a solid may rise or fall with the increase of pressure
depending on whether the specific volume of the liquid is larger or smaller
than that of the solid (see fig.2.7).

(a) (b)

Fig.2.7: Phase diagrams of (a) typical substances which expand on melting
(b) water which expands on freezing.

Saturated Vapore Pressure of a Solid: An Application of the
Clausius-Clapeyron Equation
From the Clausius-Clapeyron equation we have

(dP/dT) = Lyg/[T(vg — vs)]

where the subscripts s and ¢ refer to the solid and gaseous phases, respec-
tively, and Ly, is the molar latent heat of sublimation; v being the mole-
specific volume. Consider very low temperature and pressure. At very low
pressure we can use the ideal gas law for the gaseous phase, i.e., Pvy = RT.
Moreover, since the density of solids is much greater than that of the vapour,
vg — vs =~ vg. Therefore,

(dP/dT) ~ Lsg/(Tvg) = (LsgP)/(RT?)

and, hence,
P o exp|~Lyg/ (RT)]
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Moreover,
Lgg = (€g — €5) + P(vg — v5)

where €4 — €5 is the change in the internal energy caused by the transfer of
one mole from the solid to the gaseous phase. But, P(vg — vs) ~ Pvg = RT
which is negligibly small compared to €; — €5 provided the temperature is
sufficiently low. Therefore, Lsg >~ (¢4 — €,) and, finally,

P x exp[—(eg — €5)/(RT)] (2.12)

The equation (2.12) has been found to be in excellent agreement with ex-
perimental data for many substances.
eThree Coexisting Phases

In order that three phases with intensive variables (T}, Py, p1), (T2, P2, p2)
and (T3, Ps, t3) coexist in mutual equilibrium we must have Th =Ty = T3 =
T P, =P, =P; =P py = puy = U3 = i, or, equivalently,

.ul(PaT) - /1'2(PaT) = “3(P,T) (213)

Since the intersection of the planes u,(P,T) and py(P,T) is a curve, that
between py(P,T) and p3(P,T) is another curve and that between ps(P,T)
and p,(P,T) is yet another curve, these curves of intersection meet at a
special point described by the equation (2.13). This special point where all
the three phases coexist simultaneously in mutual equilibrium is caled the
triple point (see fig.2.1).

2.5 Stable, Metastable and Unstable States

The concepts of stable, unstable and metastable states are very familiar in
mechanics. Consider, for example, a particle sitting at rest in a groove inside
a wire which has the shape shown in fig.2.8. All the locations of extrema
of this curve, shown in fig.2.8, can be regarded as positions of equilibrium
for the particle. However, the particle is in unstable equilibrium when at
the maximum of the curve, as any infinitesimal perturbation in its posi-
tion takes it away from the top of the potential "hill” thereby lowering its
gravitational potential energy. On the other hand, the position of the left
minimum is identified as the state of stable equilibrium because the gravita-
tional potential energy has a global minimum in this position. Note that the
positions of both the minima correspond to local minima, of the gravitational
potential energy of the particle and, therefore, both these states are stable
against infinitesimal perturbations in the corresponding positions, but the
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right minimum does not correspond to the global minimum of the potential
energy and, hence, identified as metastable.

>V

Fig.2.8: Concepts of stable, unstable and metastable states.

As explained in chapter 1, the thermostatic states of equilibrium of a sys-
tem corresponds to the extrema of the appropriate thermostatic potentials.
As the conditions of intrinsic stability were derived in section 2.4 from local
stability analysis, these are satisfied by both stable and metastable thermo-
static states. In other words, a state with all positive response coefficients
may still be metastable rather than being stable.

Supercooled liquids, supersaturated solutions, etc. are examples of metastable
states in real physical systems. However, in this section we investigate the
metastability and instability in the Van der Waals fluid and its magnetic
counterpart (a Curie-Weiss magnet); the metastable and unstable branches
of the isotherms in these model systems are artefacts of approximations
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made in their derivations which will be presented in chapter 10.

V(P)

Fig.2.9: (a) A typical isotherms of the Van der Waals fluids below 7, on
(a) the P — V diagram, (b) the V' — P diagram.



