
4. Random variables

In the previous chapter, we have seen that the essence of statistical physics consist in replacing the
integration of the dynamics to compute averages over time – which is what the experiments report
– by a statistical average of the values taken by the observable in phase space, weighted with an
appropriate distribution. The present chapter aims at recalling some basic tools and concepts that
are useful when dealing with random variables. We shall also take this opportunity to present the
Legendre transform, which has nothing to do with random processes, but which happens to be a
major tool of statistical physics and thermodynamics.

4.1 Random variables and Generating Functions

Let’s consider a random variable X with real value and its probability density r(X). One defines
the n-th order moment of X as

µn :=hXni =
Z •

�•
xn r(x)dx. (4.1)

Définition 4.1.1 — Moment-generating function. The moment-generating function of X is
defined as

MX(k) :=
D

ekX
E

, k 2 R, (4.2)

wherever this expected value exists.

The reason for defining this function, also called the characteristic function, is that it can be used to
find all the moments of the distribution. Indeed, writing the series expansion of ekX , one gets

MX(k) =
D

ekX
E

= 1+ k hXi+
k2 ⌦

X2↵

2!
+

k3 ⌦
X3↵

3!
+ · · ·+ kn hXni

n!
+ · · · (4.3)

= 1+ kµ1 +
k2µ2

2!
+

k3µ3

3!
+ · · ·+ knµn

n!
+ · · · , (4.4)
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Hence

MX(k) =
•

Â
n=1

µn
kn

n!
, with µn =

dnMX(k)
dkn

����
k=0

(4.5)

One also defines the centered momenta, as µ̂n := h(X � µ1)ni, which characterize the distribution,
after centering it on the average of X .

Définition 4.1.2 — Cumulant-generating function. The cumulants of a random variable X
are defined using the cumulant-generating function, which is the logarithm of the moment-
generating function : KX(k) = log(MX(k)) = log

⌦
ek X↵

.

The cumulants kn are again obtained from a power series expansion of the cumulant generating
function :

KX(k) =
•

Â
n=1

kn
kn

n!
, with kn =

dnKX(k)
dkn

����
k=0

(4.6)

The first cumulant is the expected value ; the second and third cumulants are respectively the second
and third centered momenta (the second centered moment is the variance) ; but the higher cumulants
are neither momenta nor centered momenta, but rather more complicated polynomial functions of
the momenta. For instance µ̂4 = k4 +3k2

2 .

Proposition 4.1.1

— If two distributions have the same moment or cumulant generating function, then they are
identical at almost all points.

— The cumulant generating function, if it exists, is infinitely differentiable and convex, and
passes through the origin.

— The cumulant-generating function exists if and only if the tails of the distribution are majored
by an exponential decay.

For statistically independent random variables X and Y ,

KX+Y (k) = log
D

ek(X+Y )
E

= log
⇣D

ekX
ED

ekY
E⌘

= log
D

ekX
E

+ log
D

ekY
E

= KX(k)+KY (k), (4.7)

so that each cumulant of a sum of independent random variables is the sum of the corresponding
cumulants

4.2 Entropy of a distribution, joint and marginal distributions

Let X be a random variable with probability density r(X)

Définition 4.2.1 — The Kullback-Leibler divergence. The Kullback-Leibler divergence of
the probability density r(X) with respect to the probability density h(x) is a functional defined
as

D [r||h] =
Z

dxr(x) log
✓

r(x)
h(x)

◆
(4.8)

It measures how different is the probability density r(x) from h(x). In particular it is always positive
and it is zero if and only if r(x) = h(x).
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Définition 4.2.2 — Entropy. The entropy of the probability density r(X) is defined as

S [r] = �
Z

dxr(x) log(r(x)) (4.9)

It provides a characterization of the shape of the probability density. The larger the entropy the
larger is the width of the distribution.

R Please mathematician friends forgive the fact that the above definition includes taking
the log of a dimensional quantity. One way of "solving" this problem, would be to see
S(r) = �D(r||µ), with µ , the uniform measure. This is however not correct because the
uniform measure cannot be normalized on unbounded domains... Assuming our friends keep
their eyes closed, one could write µ = 1

• and obtain

S[r] =
Z

dxr(x)log(•)�D(r||µ).

From this we see that S is indeed maximal when r is uniform, actually infinite if the domain
is unbounded, and that S decreases when going away from the uniform measure, namely
when the width of r decreases. Also S[r] can be both positive and negative. If one feels
uncomfortable with such little arrangements, he should come back to the case of discrete
sets of configurations, where everything is well defined (see the discussion about the limiting
density of discrete points on wikipedia.)

Up to now, we have only introduced random variables with values in R. In order to compute
averages like the ones introduced in the previous part (equations 2.9), we’ll need to extend the
above formalism to random variables in RN , where N is the number of degrees of freedom of the
system of interest.

The joint probability density r(~X) = r(X1,X2, · · ·XN) is a prodigiously rich information about the
system, since it describes the probability of all possible micro-states. In many cases, we’ll see that
one is often interested in a reduced information, namely the probability density of certain degrees
of freedom, letting the others be anything.

Définition 4.2.3 — Marginal distributions. For simplicity and for visualization ease (see
figure 4.1), let’s consider a random variable ~X = (X1,X2).

The probability that X1 2 [X1;X1 +dX1] and X2 2 [X2;X2 +dX2] is :

P(X1 2 [X1;X1 +dX1] ,X2 2 [X2;X2 +dX2]) = r2(X1;X2)dX1dX2, (4.10)

where r2(X1;X2) is the joint-distribution of (X1,X2).

The probability that X1 2 [X1;X1 +dX1], 8X2 is :

P(X1 2 [X1;X1 +dX1] ,8X2]) =

✓Z
r2(X1;X2)dX2

◆
dX1 = r1(X1)dX1, (4.11)

where r1(X1) is called the marginal distribution of X1. By symmetry one defines r1(X2), the
marginal distribution of X2. Note that marginal distributions are naturally normalized.

The marginal distribution should not be confused with the conditional one. The probability that
X2 2 [X2;X2 +dX2], knowing X1 is :

P(X2 2 [X2;X2 +dX2] ,knowingX1]) = r(X2|X1)dX2. (4.12)
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FIGURE 4.1 – Joint (the surface r2(x,y)), marginal (integrated area r1(x)) and conditional distribu-
tion (the weighted top curve r(y|x))

where r(X2|X1) is called the conditional probability of X2, knowing X1. By symmetry one defines
r(X1|X2) the conditional probability of X1, knowing X2. One clearly has :

r2(X1,X2) = r(X2|X1)r1(X1) = r(X1|X2)r1(X2), (4.13)

from which one easily checks that the conditional probabilities are also normalized.

R If the variables X1 and X2 are independent, then knowing anything about X1 will not condi-
tion the distribution of X2. Hence for two independent variable r(X2|X1) = r1(X2), and
r2(X1,X2) = r1(X1)r1(X2).

R If r2(X1,X2) = r1(X1)r1(X2) and h2(X1,X2) = h1(X1)h1(X2), then the Kullback-Leibler
divergence is additive :

D(r2(X1,X2)||h2(X1,X2)) = D(r1(X2)||h1(X2))+D(r1(X1)||h1(X1))

.

4.3 Gaussian variables

Let X be a random variable with a Gaussian distribution G(µ,s) :

r(x) =
1p

2ps2
exp�(x� µ)2

2s2 . (4.14)

The prefactor 1p
2ps2 ensures that the distribution is normalized :

R •
�• r(x)dx = 1.

Two very useful relations are the so-called Hubbard-Stratonovich transformations :

1p
2ps2

Z •

�•
exp


� x2

2s2 ± kx
�

dx = exp
✓

s2k2

2

◆
(4.15)

1p
2ps2

Z •

�•
x exp


� x2

2s2 ± kx
�

dx = ±s2k exp
✓

s2k2

2

◆
(4.16)
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R Note that the argument in the exponential on the right-hand side is always coming with
a positive sign if x is real. The only way to obtain a negative sign is to apply the same
transformation with x being a pure imaginary number. It is actually in this context that the
transformation was introduced ; and you may be surprised to learn that it was introduced to
transform the simple-looking right-hand side into the less simple looking left-hand side. But
this is another story....

The moment generating function exists and is equal to (direct consequence of the Hubbard Strato-
novitch transformation)

MX(k) =
⌦
ekX↵

= eµke
1
2 s2k2

The cumulant generating function is thus simply the quadratic polynomial

KX(k) = logM(k) = µk + 1
2 s2k2

Thus only the first two cumulants, namely the mean hXi = µ , and the variance k2 = µ̂2 = var(X) =D
(X �hXi)2

E
= s2 are nonzero. This is actually an elegant way of computing the mean and the

variance.

The entropy of the distribution S(s) = 1
2 + log(

p
2ps2) indeed increases with the distribution

width as characterized by its variance.

What is remarkable is that the normal distribution is the only absolutely continuous distribution
whose cumulants beyond the first two (i.e., other than the mean and variance) are zero. It is also the
continuous distribution with the maximum entropy for a specified mean and variance.

4.4 Central Limit Theorem

The Gaussian distribution discussed above is key to statistical physics because it enters into the
simplest version of the Central Limit Theorem (CLT). This theorem establishes that, in most
situations, when independent random variables are added, their properly normalized sum tends
toward a Gaussian distribution even if the original variables themselves are not normally distributed.

Let (X1, . . . ,XN) be a set of independent and identically distributed random variables drawn from
distributions of expected values given by µ and finite variances s2. Consider the normalized sum
SN := 1

N ÂXi of these random variables, also called the empirical mean of X . Because the Xi are
random variable, SN also is.

For all N, the linearity of the average and the variance ensures that hSNi = µ and Var (SN) = s2/N.
In practice, one does not have access to hSNi but only to a finite number of realizations and one
would like to know how they are distributed. Intuitively, the larger N, the closer to µ should SN be.

Proposition 4.4.1 — Law of Large Numbers. The law of large numbers indeed states that

lim
N!•

SN = µ,with probability one. (4.17)

Proposition 4.4.2 — Central Limit Theorem. The CLT precises the scaling in N in the following
way : YN = SN�µ

s/
p

N
converges in law to the Gaussian distribution G(0,1).

The usefulness of the theorem is that the distribution of SN approaches Gaussianity regardless of
the shape of the distribution of the individual Xi, provided that its variance is finite.

The central limit theorem has a number of variants. In its common form, the random variables
must be independent and identically distributed. In variants, convergence of the mean to the normal
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distribution also occurs for non-identical distributions or for non-independent observations, given
that they comply with certain reasonable conditions, which guarantee that the contribution of any
individual random variable to the variance is arbitrarily small, for sufficiently large N, and that the
correlations are not long ranged.

4.5 Legendre-Fenchel transfrom

Définition 4.5.1 — Legendre-Fenchel transform. We define the Legendre-Fenchel transfrom
of a function l (k) as

I(s) = sup
k

[sk �l (k)] . (4.18)

One particular and easy case to consider, although not the general case as we shall see below, is
when l (k) is a strictly convex function, d2l

dk2 > 0. It is therefore differentiable and, deriving the
element to be maximized, one finds s = dl

dk

��
k. Since dl

dk

��
k is a monotonic and growing function of k,

it is invertible and k(s) is the locus of the unique maximum. The Legendre-Fenchel transform of
l (k) is then the less general Legendre transform :

I(s) = sk(s)�l (k(s))) with s(k) =
dl
dk

, and k(s) its inverse. (4.19)17
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FIG. 4: (a) Properties of �(k) at k = 0. (b) Legendre duality: the slope of � at k is the point at which the slope of I is
k.

where 0  p, q  1, p + q = 1. Applying this inequality to �(k) yields

� ln
D
enk1An

E
+ (1 � �) ln

D
enk2An

E
� ln

D
en[�k1+(1��)k2]An

E
(56)

for � 2 [0, 1]. Hence,

��(k1) + (1 � �)�(k2) � � (�k1 + (1 � �)k2) (57)

A particular case of this inequality, which defines a function as being convex [238], is �(k) � k��(0) = kµ;
see Fig. 4(a). Note that the convexity of �(k) directly implies that �(k) is continuous in the interior of its
domain, and is differentiable everywhere except possibly at a denumerable number of points [238, 272].

3. Legendre transform and Legendre duality

We have seen when calculating the rate functions of the Gaussian and exponential sample means that the
Legendre-Fenchel transform involved in the Gärtner-Ellis Theorem reduces to

I(a) = k(a)a � �(k(a)), (58)

where k(a) is the unique root of ��(k) = a. This equation plays a central role in this review: it defines, as is
well known, the Legendre transform of �(k), and arises in the examples considered before because �(k) is
everywhere differentiable, as required by the Gärtner-Ellis Theorem, and because �(k) is convex, as proved
above. These conditions—differentiability and convexity—are the two essential conditions for which the
Legendre-Fenchel transform reduces to the better known Legendre transform (see Sec. 26 of [238]).

An important property of Legendre transforms holds when �(k) is differentiable and is strictly convex,
that is, convex with no linear parts. In this case, ��(k) is monotonically increasing, so that the function k(a)
satisfying ��(k(a)) = a can be inverted to obtain a function a(k) satisfying ��(k) = a(k). From the equation
defining the Legendre transform, we then have I �(a(k)) = k and I �(a) = k(a). Therefore, in this case—and
this case only—the slopes of � are one-to-one related to the slopes of I . This property, which we refer as the
duality property of the Legendre transform, is illustrated in Fig. 4(b).

The next example shows how border points where �(k) diverges translate, by Legendre duality, into
branches of I(a) that are linear or asymptotically linear.3 A specific random variable for which this duality
behavior shows up is the sample mean of exponential random variables studied in Example III.2. Since we
can invert the roles of �(k) and I(a) in the Legendre transform, this example can also be generalized to show
that points where I(a) diverges are associated with branches of �(k) that are linear or asymptotically linear;

3 Recall that, because �(k) is a convex function, it cannot have diverging points in the interior of its domain.

k(s)
I(s)

ss(k)

FIGURE 4.2 – Illustration of the Legendre transform.

R If l (k) is strictly concave, the same construction holds, provided that one defines I(s) =
infx [sk �l (k)].

Proposition 4.5.1 — Properties of the Legendre transform.
In the specific case, when l (k) is strictly convex, l (k) is the Legendre transform of I(s).

Indeed :

dI
ds

= k(s)+ s
dk
ds

� dl
dk

dk
ds

= k(s), (4.20)

hence

l (k) = ks(k)� I(s(k)), with k(s) =
dI
ds

, and s(k) its inverse (4.21)
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There is thus a systematic correspondance : I0(s) = k <=> l 0(k) = s, as illustrated on figure 4.2

It is also easy to check that :

d2l
dk2

d2I
ds2 = 1, I(0) = �lmin, l (0) = �Imin. (4.22)

R These propositions do not hold in the general case of the Legendre-Fenchel transform.
Consider the case where l (k) is not differentiable in one point (see figure 4.3). There is no
more a one to one correspondance between I(s) and l (k) : all function with the same convex
envelope I⇤⇤(s) share the same l (k) with a singularity for k corresponding to the slope of the
straight part in the convexe envelope.
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FIG. 9: Legendre-Fenchel transforms connecting (a) a nonconvex rate function I(s), (b) its associated scaled cumulant
generating function �(k), and (c) the convex envelope I��(s) of I(s). The arrows illustrate the relations I� = �,
�� = I�� and (I��)� = �.

of the scaled cumulant generating function �(k) of Yn. To be sure, calculate �(k):

�(k) = lim
n��

1

n
ln

e�nk + enk

2
= |k| (109)

and its Legendre-Fenchel transform:

I��(y) = sup
k

{ky � �(k)} =

⇢
0 if y 2 [�1, 1]
� otherwise. (110)

The result does indeed differ from I(y); in fact, I(y) 6= I��(y) for y 2 (�1, 1).
The Gärtner-Ellis Theorem is obviously not applicable here because �(k) is not differentiable at k = 0.

However, as in the example of the skewed Lévy random variables (Example IV.3), we could apply the
Legendre transform of Eq. (82) locally where �(k) is differentiable to obtain some part of I(y). In this case,
we obtain only two points of this function, namely, I(�1) = 0 and I(1) = 0, since ��(k) = �1 for k < 0
and ��(k) = 1 for k > 0.

The previous example raises a number of important questions related to the Gärtner-Ellis Theorem and
the way rate functions are calculated. The most obvious has to do with the differentiability of �(k): Is there a
general connection between the differentiability of this function and the convexity of rate functions? Indeed,
why is �(k) required to be differentiable in the Gärtner-Ellis Theorem? Moreover, what is the result of the
Legendre-Fenchel transform of �(k) in general? To answer these questions, we list and discuss next four
results of convex analysis that characterize the Legendre-Fenchel transform. All of these results can be found
in [238] (see also [272] and Chap. VI of [84]).

Result 1: The Legendre-Fenchel transform of I yields � whether I is convex or not.

This result follows essentially because �(k) is always convex. In convex analysis, the Legendre-Fenchel
transform of I is denoted by I�. Thus I� = � for all �, in accordance with Varadhan’s Theorem.

Result 2: If I is nonconvex, then the Legendre-Fenchel transform of �, denoted by ��, does not yield I;
rather, it yields the convex envelope of I .

This result is illustrated in Fig. 9. The convex envelope is usually denoted by I��, since it is given by
the double Legendre-Fenchel transform of I , and is such that I��  I . With this notation, we then have
�� = I�� 6= I if I is nonconvex, and I = �� = I�� if I is convex. Accordingly, when a rate function I is
convex, it can be calculated as the Legendre-Fenchel transform of �.

Result 3: The convex envelope I�� of I has the same Legendre-Fenchel transform as I , that is, (I��)� =
I� = �; see Fig. 9. In general, functions having the same convex envelope have the same Legendre-
Fenchel transform.

FIGURE 4.3 – Illustration of the Legendre-Fenchel transform in the case of a non differentiable
l (k)

We shall see now why the Legendre-Fenchel transform, and its specialized version, the Legendre
transform are so present in statistical physics and thermodynamics.

4.6 Large deviations, Gärtner-Ellis and Cramér’s theorems

In the context of statistical physics, we shall be interested in the statistics of some physical quanti-
ties, averaged over the N components of the system. Let SN be such a random variable indexed by
the integer N. One is interested in the statistical properties of this variable, namely its probability
distribution P(SN = s) when N is very large.

Définition 4.6.1 — Large deviation principle. One says that P(SN = s) satisfies a large
deviation principle with rate I(s) if the following limit exists :

I(s) = � lim
N!•

1
N

lnP(SN = s), in other words P(SN = s) ⇡ exp[�N I(s)]. (4.23)

The function I(s) is called the rate function or the large deviation function. Be aware that the
same wording sometime refers to I(s), sometime to �I(s).

Figure 4.4 provides an illustration of such a rate function, and the associated P(SN = s) for different
N. One sees how the distributions becomes sharper and sharper around its most probable value,
which corresponds to the minimum and zero of the rate function. Essentially, if the variable SN
satisfies a large deviation principle, the fluctuations outside the most probable value decreases
exponentially fast to zero with N and the rate function tells us how exponentially fast. This is of
course of primary importance to guarantee that most probable value are good estimates of the
macroscopic variable of interest.
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FIG. 3: Exponential sample mean with µ = 1. (a) Probability density p(Sn = s) for increasing values of n together
with its corresponding rate function J(s) (red line). (b) Typical realization of Sn converging to its mean.

The rate function J(s) that we find here is similar to the rate function I(r) found in the first example—it
is convex and possesses a single minimum and zero; see Fig. 2(a). As was the case for I(r), the minimum
of J(s) has also for effect that, as n grows, p(Sn = s) gets more and more concentrated around the mean
µ because the mean is the only point for which J(s) = 0, and thus for which p(Sn = s) does not decay
exponentially. In mathematics, this concentration property is expressed by the following limit:

lim
n��

P (Sn 2 [µ � �, µ + �]) = 1, (10)

where � is any positive number. Whenever this limit holds, we say that Sn converges in probability to its
mean, and that Sn obeys the Law of Large Numbers. This point will be studied in more detail in Sec. III.

In general, sums of IID random variables involving different probability distributions for the summands
have different rate functions. This is illustrated next.

Example II.3 (Exponential sample mean). Consider the sample mean Sn defined before, but now suppose
that the IID random variables X1, X2, . . . , Xn are distributed according to the exponential distribution

p(Xi = xi) =
1

µ
e�xi/µ, xi > 0, µ > 0. (11)

For this distribution, it can be shown that

p(Sn = s) ⇡ e�nJ(s), J(s) =
s

µ
� 1 � ln

s

µ
, s > 0. (12)

As in the previous examples, the interpretation of the approximation above is that the decaying exponential
in n is the dominant term of p(Sn = s) in the limit of large values of n. Notice here that the rate function is
different from the rate function of the Gaussian sample mean [Fig. 3(a)], although it is still positive, convex,
and has a single minimum and zero located at s = µ that yields the most probable or typical value of Sn in
the limit n ! �; see Fig. 3(b).

The advantage of expressing p(Sn = s) in a large deviation form is that the rate function J(s) gives a
direct and detailed picture of the deviations or fluctuations of Sn around its typical value. For the Gaussian
sample mean, for example, J(s) is a parabola because the fluctuations of Sn around its typical value (the mean
µ) are Gaussian-distributed. For the exponential sample mean, by contrast, J(s) has the form of a parabola
only around µ, so that only the small fluctuations of Sn near its typical value are Gaussian-distributed. The
large positive fluctuations of Sn that are away from its typical value are not Gaussian; in fact, the form of
J(s) shows that they are exponentially-distributed because J(s) is asymptotically linear as s ! �. This
distinction between small and large fluctuations explains the “large” in “large deviation theory”, and will be

FIGURE 4.4 – Illustration of a Large deviation function and the associated variation of P(SN = s),
with N and typical realization of SN converging to its most probable value.

The theory of large deviations aims at establishing when a large deviation principle exists for a
given random variable SN , and at deriving the expression of the associated rate function.

In some rare case, one can compute explicitly P(SN = s) and derive the rate function from its
asymptotic development at large N. In general, however, P(SN = s) cannot be computed. This is
where the large deviation theory becomes useful. A key theorem of the theory is the Gärtner-Ellis
theorem :

Proposition 4.6.1 — Gärtner-Ellis Theorem. One defines the scaled cumulant generating function
of SN by the limit

l (k) = lim
N!•

1
N

KNSN (k) = lim
N!•

1
N

log
D

ek NSN
E

. (4.24)

If l (k) exists and is differentiable for all k, then SN satisfies a large deviation principle, with a rate
function I(s) given by the Legendre–Fenchel transformation :

I(s) = sup
k

[ks�l (k)] (4.25)

It is instructive to consider the following heuristic argument for the expression of the rate function.
Assuming the existence of the large deviation principle, one has in the limit of large N

P(SN = s) ⇡ exp[�N I(s)], (4.26)

and
D

ek NSN
E

⇡
Z

eN[ks�I(s)]ds ⇡ eN sups[ks�I(s)], (4.27)

where the last equality results from the celebrated saddle-point, or Laplace’s approximation (see
below). One thus finds that l (k) is the Legendre transform of I(s) and therefore, if I(s) is strictly
convex, that I(s) is the Legendre transform of l (k)

l (k) = sup
s

[ks� I(s)], and I(s) = sup
k

[ks�l (k)]. (4.28)

We thus see that the Gärtner-Ellis Theorem is essentially a consequence of the large deviation
principle combined with the Laplace’s approximation and that the Legendre-Fenchel transform
appears into this theory as a natural consequence of Laplace’s approximation.
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R Here we have used the Laplace’s approximation in its crudest form. At the next order one has,
in the limit of large N, for a function g with its maximum in s⇤ :

Z
eNg(s)ds ⇡ eNg(s⇤)

Z
e� N

2 g00(s⇤)(s�s⇤)2
ds = eNg(s⇤)

✓
2p

N |g00(s⇤)|

◆1/2
(4.29)

Nota Bene : The rate functions obtained from the Gärtner-Ellis Theorem are necessarily strictly
convex. Unfortunately rate functions are not all strictly convex ; some may even have local minima
in addition to global ones... Those rate function can thus not be found using the Gärtner-Ellis
theorem...

The Gärtner-Ellis theorem best applies to an extension of the Central Limit Theorem, called the
Cramér’s theorem.

Proposition 4.6.2 — Cramérs Theorem. Like for the central limit theorem, let (X1, . . . ,XN) be a
set of (i.i.d) random variables drawn from distributions of expected values given by µ and finite
variances s2 and consider the normalized sum SN := 1

N ÂXi of these random variables. The theorem
states that SN satisfies a large deviation principle and that the rate function

I(s) = sup
k

[ks�KX(k)], (4.30)

where KX(k) is simply the cumulant generating function of the Xi’s.

The proof is the simple result of the fact that for (i.i.d), KNSN (k) = NKX(k), and therefore that
l (k) = KX(k).

The rate function I(s) inherits some interesting properties from those of the cumulant generating
function l (k) = KX(k). Remember that the cumulant generating function of a random variable is
always convex (although not strictly convex).

• l (0) = 0 => I(s) � 0 ; proof : l (0) = sups[0k � I(s)] = � inf[I(s)].
• l 0(0) = µ => I0(µ) = 0 : µ is the minimum of the rate function
• l 00(0) = s2 => I00(µ) = 1/s2.

The Central Limit Theorem states that, for any well behaved distribution for the Xi’s, I(x) has a
parabolic shape of width sp

N
around the maximum x = µ . It is clear that further away from the

maximum, the parabolic shape is not guaranteed unless strictly speaking when N ! •. The above
theorem provides a way to compute the deviations, far away from the maximum, hence the name
"Large deviations" of the theory

⌅ Exemple 4.1 — The case of Gaussian variables. Let the Xi’s obey a Gaussian distribution of
mean µ and variance s2. We have seen that KX(k) = log

⌦
ekX↵

= µk + 1
2 s2k2. Hence

I(s) = supk[ks�KX(k)] = k⇤s�KX(k⇤), with
dKX

dk
��
k⇤ = s, or k⇤ =

s� µ
s2 (4.31)

I(s) =
1
2

(s� µ)2

s2 . (4.32)

In the case of Gaussian variables, the large deviation function is a parabola itself. ⌅

⌅ Exemple 4.2 — The case of Poisson variables. Let the Xi’s be integer variables obeying a
Poisson distribution r(x) = l xe�l

x! . One can show that hXi = l and the variance var(X) = l . The
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cumulant generating function KX(k) = log
⌦
ekX↵

= l
�
ek �1

�
. Hence

I(s) = supk[ks�KX(k)] = k⇤s�KX(k⇤), with
dKX

dk
��
k⇤ = s, or k⇤ = log(

s
l

) (4.33)

I(s) = s log(
s
l

)� s+l . (4.34)

We here see that the large deviation function is certainly not a parabola. It is however easy to check
that its maximum takes place at s = l and that the parabolic shape around that maximum has widthp

l , as prescribed by the CLT (see figure 4.5). ⌅
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FIGURE 4.5 – Poisson distribution on the left and large deviation function for a sum of Poisson
variables together with the parabola provided by the CLT (dashed) on the right ; (here l = 5).


