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We present a pedagogical account of the Lee-Yang theory of equilibrium phase transitions and review recent
advances in applying this theory to nonequilibrium systems. Through both general considerations and explicit

studies of specific models, we show that the Lee-Yang approach can be used to locate and classify phase
transitions in nonequilibrium steady states.

| Introduction zeros of the partition function when generalised to the com-
plex plane of an intensive thermodynamic quantity. Initially,

In this work we seek a mathematical understanding of phaseln® theory was couched in terms of zeros in the complex

transitions in the steady state of stochastic many-body sys-ugacity plane which is appropriate for fluids in the grand
tems. Systems at equilibrium with their environment pro- canonical (fluctuating particle number) ensemble. However,

vide examples of such steady states, and the mechanisms urfY Mapping a lattice gas onto the Ising model [3], the theory
derlying equilibrium phase transitions are long known and Was found to hold equally well for a magnet in a fixed mag-

understood. Experimentally, one can distinguish betweenNetic fielgl. Later [4-6] it became clear that the distribu.tion
two types of transition: the first-order transition at which ©f Z&ros in the complex temperature plane can reveal infor-
there is phase coexistence, e.g. between a high-density soliation about phase transitions in the canonical ensemble.
and a low-density fluid, and the continuous transition at [N section Il we present a brief, self-contained discus-

which fluctuations and correlations grow to such an extent Sion of the Lee-Yang theory of equilibrium phase transitions
as to be macroscopically observable. which relates nonanalytic behaviour in the free energy to ze-

. . ros of the partition function. In the remainder of this article,
From a thermodynamical perspective, one can under- . . . -
we move our attention to phase transitionsnionequilib-

stand first-order transitions by associating with each phase . .
. rium steady states, that is, those that carry currents of mass
a free energy. For a given set of external parameters, the

phase ‘chosen’ by the system is that with the lowest free energy or some other quantity. We give therefore a very

" brief introduction to the established practice of modelling
energy, and so a phase transition occurs when the free ener-

ies of two (or more) phases are equal. The sudden chan enonequilibrium physics through stochastic dynamics in sec-
9 P qual. 9%8on 111 In particular, we will identify a candidate quantity

in macroscopically measurable quantities that take place atfor use in place of an equilibrium partition function when
first-order transitions are described mathematically as dis- . . o .
R . o . performing an Lee-Yang analysis of phase transitions. Fi-
continuities in the first derivative of the free energy. Discon- . . . : :
nally, in section IV we review recent work in which the

tinuities in higher derivatives relate to continuous (higher- Lee-Yang theory has been successfully applied to specific

order) phase transitions. o -
o o . nonequilibrium phase transitions.
The tools of equilibrium statistical physics allow one—

in principle at least—to express the free energy solely in

terms of microscopic mteractlons_. More sp_e_cmcally, the Il Overview of Lee-Yang theory of

free energy is given by the logarithm ofpartition func- o o

tion, a quantity that normalises the steady-state probability equmbrlum phase transitions

distribution of microscopic configurations. Initially it was

not universally accepted that this approach could faithfully In this section we recount the relationship of zeros of a

describe phase transitions, in particular the first-order solid- partition function to phase transitions in the system it de-

fluid transition [1]. In order to show that the statistical me- scribes. We present here a brief but self-contained tour of
chanical approachanreproduce the correct discontinuities the key points. For more detail (and mathematical rigour)

in the free energy at a first-order transition, Lee and Yang the reader is referred to textbooks, such as [7] or, for a more
[2] introduced a description of phase transitions concerning advanced presentation, [8], as well as early treatments of the
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subject [2-6].
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exists and we may write

For concreteness we shall describe the theory in terms of

a simple model system ¥ spins in thermal contact with a

heat reservoir. In this model system the energy of the sys-

tem can take value® = ne withn = 0,1,2,..., M and
the number of microstates corresponding toskie energy
level isg(n). The canonical partition function is given by

M

Zn(B) = g(n) exp(—fine)

n=0

1)

whereg is the inverse temperature. To investigate the zeros

of this partition function, it is useful to make the change of
variablez = e~7¢. Then, the partition function is explicitly
a polynomial inz of degreeM and can be factorised as

nzog(n)z" - nf[l (1 - ;n) .

Clearly the quantities,, are theM zeros of the partition
function Zy (z); meanwhilex is a constant which we can
safely ignore in the following.

Since all they(n) are positive, no zero of (=) can be
real and positive: that is, the zergswill generally lie in the
complex plane away from the physical values:afhich lie
on the positive real axis. We now define for all complex
exceptthe pointsz = z,, the (complex) free energy

M

ZN(2) )

() = 22N E) 3)
Using (2) we rewrite this as
1 M z
hy(z) = N;m (1—2) 4)

and note that a Taylor series expansiormhaf(z) around a
point z # z, has a finite radius of convergence given by the
distance to the nearest zero fram This then implies that
thathy (z) can be differentiated infinitely many times over
any region of the complex plane that is devoid of partition
function zeros. Since we identify a phase transition throug
a discontinuity in a derivative of the free energy,
such a transition can only occur at a paigtin the complex
plane if there is at least one zero of the partition function
Zn(z) within any arbitrarily small region around the point
Z0-

Clearly this scenario is impossible if the number of zeros

M is finite, except at the isolated points where the free

h(z) = /dz’p(z’) In (1 - 3) (6)

wherep(z) is the local density of zeros in the complex-
plane in the thermodynamic limit.

Since the imaginary part of this complex free energy
h(z) is multi-valued it will at times be more convenient to
work with thepotentialy(z) defined as

o(z) =Reh(z) = /dz'p(z’) In ’1 — 3’ )

An expression for the densip(z) in terms of the poten-
tial p(z) is easily obtained once one recognises that|
is the Green function for the two-dimensional Laplacian.
Specifically, ifz = x + iy, we have

2 32 )
+ 8y2> In|z +dy| = 2md(x)d(y) .
(8)

Using this expression, we can take the Laplacian of both
sides of (7) to find

V2lnz|:<a

0a?

—Vp(2) . 9)

p(z) = o
Such an equation is familiar from electrostatics ang6n)
is analogous to an electrostatic potential.

In analogy to electrostatics, as long as we can integrate
p(x) over bounded regions containing any singularitieg,of
the potential will be a continuous function [9]. The signifi-
cance of this statement is that we can derive a rule for locat-
ing phase boundaries given a partition function. Let us sup-
pose that around points andz, in the complex plane, one
has (analytic) expressions for the potenia(z) andps(z)

h such thatp: (2) # ¢2(2) (i.e. not the same function over the
we see thatentirety of the complex plane). In order for the potential to

be continuous at all points on the complex plane, we must
have a phase boundary at those values &r which the

condition
p1(2) = p2(2) (10)

holds. This is basically the definition of a transition men-

energy exhibits a logarithmic singularity. Since such a point tioned above in the introduction. Singg and, are dif-

cannot lie on the positive real axis, there is no scope for

ferent functions, some derivatives @fz) will not exist at

a phase transition in a finite spin system, such as the sim-these values of and we expect the density of zeros at these

ple example (1). On the other hand, if the partition function
zeros accumulate towards a potgton the real axis as we
increase the number of spinéto infinity there is the possi-
bility of a phase transition.

In order to deal with the thermodynamic limit (see [8]
for rigorous considerations) we shall assume that the limit

.. InZy(2)
h(z) = lim —

N—o0

®)

points to be non-zero. (It is also possible for zeros to be
present at other points in the complex plane, but we do not
need to consider this possibility here.)

Typically, a solution of (10) describes a curgethat in-
tersects the positive realaxis at a pointy. Having already
established that we require zeros to accumulate at the point
zp in the thermodynamic limit for a physical phase transition
to take place, we are interested in the line density of zeros
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per unit length of this curve. We introduce the arclength
s which measures the distance alofigrom the transition
point zg.

To obtain an expression for the line density of zgi¢s)
along the curve’, consider a short section 6f of lengthd s
enclosed by an ared that has two sides parallel {6 and
the other two sides perpendicularde—see Fig. 1. Integrat-

]
/A dzp(2)

21

in which the functionsp; (z) andys(z) relate to the limiting
values ofy(z) as the point on the curvelC' is approached
from either side, and the vectaris the unit vector normal
to C at that point.

@ L@
AH@\ KESS
/;
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Figure 1. Small ared covering a lengtld s of the curve of zero€’

required to derive a relationship for the line density) of zeros
along the curve.

Imz

Rez

Recall thaty(z) is the real part of the complex free en-
ergyh(z) and therefore, away from any zeros of the partition
function, satisfies the Cauchy-Riemann equations

Opp(2) = 0y¢(2) and Jyp(z) = —0,9(2)

in which(z) is the imaginary part ok(z) andz = = + iy.
Then we have that

(13)

Vo(z)-h=Vi(z) -t (14)

wheret is the unit vector tangent to the curgéat the point

! /Adzv - [Ve(2)] = %ST[VQ@(Z) = Voi(2)] -7
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ing the density(z) over this area we have
/ dzp(z) = p(s)ds . (11)
A

Meanwhile, we have from (9) and an application of the di-
vergence theorem that

12)

h(z) along the curve”. Putting this together with (11) we
find that

1d

= %£[¢2(2) —Y1(2)]

in which(z) = Im[h(z)] and the subscripts indicate oppo-
site sides of a phase boundary.

Let us now assume that in the thermodynamic limit,
there is a phase transition at the poigt Then, either side
of the transition the free energy can be written as

() (15)

f172(2) = h(ZQ) + bl,gg + 01,222 + ... (16)
wherez = 2 — zp and f1 (%) is valid forRe Z < 0 and f2(2)

valid for Re Z > 0. Note that for the free energy to be real
along the reak axis, the coefficient$ andc¢ must also be
real. From the criterion that the real partigf:) is continu-

ous across a phase boundary, we find that the boundary lie:
along the curve

by — by

Co — (1

=i+

y*?

= z a7
whereZz andy are the real and imaginary parts bfespec-
tively. We consider the conditions under which a discon-
tinuous (first order) or continuous (second or higher order)
transition appear.

First-order transition

For the case whetg # b, and the free energy has a discon-
tinuity in its first derivative, the curve of zeros is a hyperbola
that passes smoothly through the transition pgintHence

z. Thus we recognise the scalar product in (12) as the di-the tangent to the curve of zeros is parallel to the imaginary
rectional derivative of the imaginary part of the free energy axis atz, and using the rule (15) we find that

]

#(0) =

™

27 digj[(bz —b1)g + 2(c2 — 1)y

M (18)

T=y=0
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Hence we see that the density of zeros at the transition pointone can just as easily generalise physical ‘field-like’ vari-
zp is nonzero at a first-order phase transition (i.e. one atables (such as temperature) or ‘fugacity-like’ variables (such
which the first derivative of the free energy is discontinu- as the quantity: considered above) to the complex plane
ous). without altering the properties of the partition-function zero
Second-order transition densities at first-order and continuous phase transitions de-

If by = by butc, # c; we have that the curvé obeys the ~ SCribed above. . _
equationj = +%. Since the zeros of the partition function Despite the apparently wide generality of the Lee-Yang

come in complex-conjugate pairs, we find that the zeros ap_j[heory of equilibrium' phas'e _transitions, proving its validity
proach the point, along straight lines that meet at a right- N the general case is a difficult task (although we note re-
angle. If we consider the lineé = § = s/+/2, we find from cent work in this direction [10]). Therefore, most rigorous

(15) that results, such as those discussed in [8], tend to rely on spe-
cific properties of a particular partition function. Perhaps the

w(s) = ii(cg —c1)s? = cz2—a (19) most spectacular of these is that obtained by Lee and Yang in
2 ds ™ their original work. Specifically, they found that the zeros of

This reveals that at a second-order phase transition, the denthe partition function for an Ising ferromagnet in an external

sity of partition function zeros decreases linearly to zero at field % all lie on the circle| exp(h)| = 1. The significance
the phase transition point. of this result, which does not depend on the number of spa-

tial dimensions, lattice structure and details of the spin-spin

interactions, is that if there is a phase transition induced by

More generally, one can consider a difference in the free en-varying the magnetic field, it can only occur at the point

ergies either side of the transition point to have the leading » = 0, and then only if the partition function zeros accumu-

behaviourfa(u) — f1(u) ~ u®. Then the condition that late there in the thermodynamic limit.

Re[f2(u) — f1(u)] = 0 suggests that the curve of zeros ap-

proaches the real axis at an angle. Unlessa = 1, the

curve does not pass smoothly through the real axis. In any||| Nonequilibrium steady states

case, the imaginary part of the free energy difference grows

as|u|* giving rise to a density of zeros that behaves®s' A nonequilibrium steady state differs from its equilibrium

for small ar(_:le_ngths. This means t_hat for the density of counterpart in that it may admit a flow of, say, energy

zeros to be finite at the transition point we must have 1. or mass. More generally, these states have a circulation
In this section we have summarised what we refer to asof probability in the space of microscopic configurations.

the Lee-Yang theory of phase transitions. This describesIn the past few years, it has become customary to model

how partition function zeros are related to phase transitions:nonequilibrium systems as stochastic processes, i.e. simple

the accumulation of zeros at a point along the physical (real,models defined by local dynamical rules. Extensive study of

positive) axis of the control parameter gives the critical value these has revealed a range of phenomena including nonequi-

and the density of zeros near to the accumulation point de-librium phase transitions [11-17]. We present below the key

termines the order of the phase transition. elements of this approach to nonequilibrium physics with a
We derived a rule (10) for locating phase boundaries andview to understanding nonequilibrium phase transitions in

a further rule (15) for finding the density of zeros along such the framework of the Lee-Yang theory described above. In

boundaries. At a first-order transition there is a nonzero den-particular, we will need to propose a quantity to use in place

sity of zeros at the transition point whereas the density de-of the equilibrium partition function (1).

cays as a power-law to zero at the transition point when the  Let us begin by discussing how one might realise the

associated phase transition is continuous. dynamics of theequilibrium spin system of the previous
Although we have discussed the theory of partition func- section, for example in a computer simulation. The aim

tion zeros with reference to the specific system describedis to generate a sequence of spin configurations such that

by the partition function (1) we should note that the ideas the frequency with which a particular configuratiGnis

hold much more generally. Firstly, one is not restricted to generated is proportional to the Boltzmann weiglt) =

the canonical ensemble: indeed in the original exposition of exp[—SE(C)] whereE(C) is the energy of configuratiof.

the theory [2], Lee and Yang worked in the grand canonical Usually this is achieved by choosing the next configuration

ensemble in which the quantity generalised to the complexC’ from the current configuratiofi with a probability pro-

plane was not a function of the temperature but rather theportional to the transition ratd’(C — C’) that satisfies the

chemical potential. Of course, in the equilibrium theory, detailed balance condition

these intensive field-like quantities play similar mathemat-

ical roles and so there is no reason why the Lee-Yang theory  f(C)W(C — C') = f(C"YW(C' — C) VC,C'. (20)

shouldn’t apply to all of them. For historical reasons, zeros

in the complex fugacity (or chemical potential) plane are of- Apart from the fact that this choice of transition rates guar-

ten referred to as Lee-Yang zeros [2, 3] and those in the com-antees convergence to the desired equilibrium distribution of

plex temperature plane Fisher zeros [4]. Also it appears thatmicrostates [18], it also has the feature that the mean current

Higher-order transition
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of any quantity in the steady state is zero (as it should be atthe transition rates from configuratien to n and the diag-
equilibrium). onal elements3V,,,, are negative and express the total rate
Since we are interested in nonequilibrium systems thatof departure from configuration. Using elementary re-
support steady-state currents we must work with transition sults from matrix theory (see [20, 17] for the details), one
rates that do not satisfy the condition (20) or equivalent cri- can show that an expression for the nhormalisaffothat is
teria (given in e.g. [19, 14, 17]). Clearly one has a lot of polynomial in the transition ratéd’(C — C’) is
freedom in the choice of transition rates, and so in practice
one often devises dynamics that seem physically reasonable Z = H (=) (23)
given the phenomena one is trying to describe. Later, in sec- Ai#0
tion IV we will give concrete examples in the form of driven
diffusive systems, in which particle moves are biased in a  \yith each of the eigenvalues is associated an eigen-
particular direction to model the effect of an external field. | o, of W describing a ‘mode’ of the stochastic process
In order to find the set of steady-state weights associ- {41 decays exponentially with a timescale = 1/|\;|
ated with a particular set of prescribed transition rates, we [17]. We have assumed that the process describevby
impose the condition that the total flow of probability into .4 only one steady state, and so only one of the eigenval-
a configuratiorC is balanced by the corresponding outflow. 65 s equal to zero (since clearly the relaxation time of a
Thatis, we must have steady state is infinite). Equation (23) states that the nor-
, , , malisationZ can be written as a product of the remaining
Z [FEOWE = C) = fFOW(C =) =0 (21) eigenvalues. Now, at a phase transition we expect diverg-
c#e ing timescales: physically one encounters metastable (long-
for every configuratior. In general there might be more lived) states near first-order transition points [21] and long
than one solution to this set of equations for the weights Correlation lengths and times at continuous transitions. The
£(C), each corresponding to a steady state that is reachedPrésence of long timescalesimplies small eigenvalue;
with some probability that depends on the starting configu- ©f Y and, from (23), that the normalisatiéh approaches
ration. We shall assume for simplicity that the steady state Z€ro- Hence it appears that it is appropriate to consider the
is unique and therefore reached with certainty from every Z&ros ofZ as given by (22) to locate nonequilibrium phase
initial state. A sufficient condition for a unique steady state transitions.
is that it is possible to reach each configuration from every
other via a sequence of microscopic transitions [17]. ; ; _
Once the steady state weight&”) are known from (21) IV Appllcat_l(_)n _Of Lee Yang thep_ry to
one can obtain the corresponding probability distribution of nonequnlbrlum phase transitions
microscopic configuration®(C) through a normalisation

in which \; are the eigenvalues of the matiX.

We shall now review recent progress in applying the Lee-
7 = Zf(c) (22) Yang theory to nonequilibrium phase transitions. We con-
C sider first in section V.1 driven diffusive systems, where
most work has so far been focussed [21-23]. An appealing
such thatP(C) = f(C)/Z. Then, one can compute av- feature, discussed in more detail below, is that some one-
erages of physical quantities and look for nonanalyticities dimensional cases have been solved exactly, the normalisa
to locate nonequilibrium phase transitions as one varies thetion (23) calculated, and nonequ”ibrium phase transitions
transition rates. At equilibrium we saw that the zeros of the ana|ysed_ (The existence of one-dimensional phage transi-
function (1) that normalises the Boltzmann weights encodestions contrasts with the case of one-dimensional equilibrium
the phase behaviour of the system. Thus we might hope thainodels which do not admit phase transitions if the interac-
more generally, the zeros of the normalisation (22) will pro- tions are short-ranged.) Then in section V.2 we move onto
vide information about nonequilibrium phase behaviour.  reaction-diffusion systems and directed percolation. We do
In section IV we review recent work that suggests that not endeavour to describe all possible nonequilibrium dy-
the steady-state phase behaviour of certain nonequilibriumnamics in the following — for example, self-organised criti-
driven diffusive and reaction-diffusion systerisscorrectly cality has also been studied using a Lee-Yang approach [25].
described by the zeros of the normalisatiBn Although
we are unaware of any rigorous argument for this to be the
case, some suggestive evidence is provided by an observa- In their original papers on partition function zeros, Lee
tion made in [20, 17] which we now outline. and Yang [2, 3] made use of the mapping between the Ising
First note that the equation (21) is linear in the weights model of a magnet and the lattice gas. Essentially one asso
f(C). This implies that these weights, and hence the nor- ciates up-spins with particles and down-spins with vacancies
malisation, can always be written as sums of products of theso that a positive interaction strengflin the Ising model re-
transition rate$¥ (C — C’). Now, by numbering the micro-  sults in a particle-particle attraction in the lattice gas, and a
scopic configurations, one can construct the transition ratenegative interaction strength gives rise to repulsive gas par-
matrix W whose off-diagonal elementd/,,,,, are equal to  ticles. Note that there is implicitly at most one particle per

IV.1 Driven diffusive systems
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lattice site, so there is a hard-core exclusion in the lattice [30]. The mean-field approach predicts phase transitions in
gas. the steady state as parameters controlling the rate of inser-
As discussed in section Ill, one can realise the dynamicstion and extraction of particles at the boundaries are varied
of the lattice gas through a set of transition rates that sat-[31]. The existence of these phase transitions is confirmed
isfy the detailed balance condition (20) with respect to the through an exact solution of the ASEP [29-31], achieved
Boltzmann distribution. Thirty years after Lee and Yang's using a powerful matrix product approach [32, 34] which
work, Katz, Lebowitz and Spohn (KLS) [26, 27] introduced has subsequently been used to solve many generalisations
adrivenlattice gas model in which the rate at which particles of the ASEP. The details of the matrix product method are
hop in the direction of an external field is enhanced and the not necessary for the following—suffice to say that one ends
hop-rate against the field is suppressed. This model is well-up calculating a normalisation proportional to (23) through
studied and many results are discussed in [28]. The princi-a product of matrices, often of infinite dimension. In this
pal effect of the driving field is to introduce anisotropy in the way one obtains some explicit formulas for the normalisa-
phase-separation that occurs below the critical temperaturdion (22) which we shall use belolv
associated with the spontaneous magnetisation of the Ising The asymmetric exclusion process with open boundaries
ferromagnet.{ > 0) in two or more spatial dimensions and is perhaps the simplest exactly solved nonequilibrium model
in the critical exponents that characterise this transition. that exhibits both a first-order and continuous phase transi-
As yet, the KLS model remains unsolved for general tion in its steady state. Therefore it is an ideal candidate
interaction strength, although in one dimension the steadyfor testing the hypothesis outlined in section Il that zeros
state is known for some parameters [29]. The particular of the normalisation should accumulate towards the positive
case of one dimension and zero interaction stretgth 0, real axis in the complex plane of transition rates. Before
known as the asymmetric simple exclusion process (ASEP),outlining the results of this analysis (the details of which are
had already been studied—at least at a mean-field level—bypresented in [23]) we recall the definition of the ASEP with
biophysicists interested in the kinetics of biopolymerisation open boundaries.

O3 -
P dodood o

Figure 2. The dynamics deflnlng the ASEP. The lattice is open and particles may be inserted or extracted at the boundaries as shown.

In this system, a particle on a¥i-site lattice can hop one indicative of a first-order transition. Meanwhile, along the
site to the right at unit rate, as long as the receiving site islinesa > ,ﬁ = andﬁ > %, o= % there is a continuous
empty. Meanwhile, particles are inserted onto the leftmost transition (| e. one accompanied by diverging lengthscales)
lattice site (if empty) at a rate and removed from the right-  to a phase in which the particle current is independert of
most site (if occupied) at a rafe— see Fig. 2. Along the  andf. The phase diagram for the model is shown in Fig. 3.
linea« = B < 1 there is a coexistence between a high-anda  The steady-state normalisation (22) for the ASEP with

2
low-density phase, with a shock separating the two. This is N sites has been calculated [32] as

]

&N — 1) (/B — (1!
LN e @y

It is a simple matter to use a computer algebra packagediately notice that the curve of zeros seems to intersect the
to solve this equation for its zeros in the comptexplane real positivea: axis at the correct transition point. Further-
at fixed N and 8. (Equivalently, one could look at the more, the density of zeros near the first-order transition point

complex# zeros at fixedy sinceZy (o, 8) = Zn(5,@).) (=0 = %) seems to be uniform and nonzero, whereas
In Fig. 4 plots of the zeros are shown for= 1, where the density of zeros near the second-order transition point
a continuous transition occurs at= = and forg = = (a = %,6 = 1) seems to decrease to zero. Both of these
where a first order transition occursmt— <. We |mme— observations are in accord with the results known for equi-

LAs yet, there is no comprehensive review of applications of the matrix-product method, although one should consult [34, 13, 15, 16] and reference
therein.
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librium partition function zeros discussed in section Il.

B
(ii) (iii)

N| =

(i)

a Figure 4. Zeros of the normalisation in the ASEP in the complex-

1 plane and3 = %, 1 and lattice sizeV = 300.

2

Figure 3. The phase diagram of the ASEP in the space spanned by . ) .
the boundary rates and3. The thick line represents a first-order Although an electostatic analogy was used in [23] to find
phase boundary, the thin line a continuous phase boundary. the zero distribution, the mathematical content is the same

As shown in [23], the distribution of zeros in the ther- &S that used to derive the two rules (10) and (15) in sec-
modynamic limit can be calculated once one knows that, for 10" Il- Applying the first rule, which demands that the real
large N, the normalisation behaves s, ~ AJ-~NN7. In part of the free energy be continuous across a phase bound
this expressiond, .J and~ depend om and3 and the quan- ary, we find that the zeros dfy («, 8) should lie along the

tity .J is the current of particles across the lattice. Thus, the CUVe|a(l — a)| = ac(l — ac). Itis therefore convenient
complex free energy (3) in the lim¥ — oo is to change variable 9 = a(1 — a). Then, in the complex-
plane, the zeros lie on the circlé] = & = a.(1 — ac).

InZ - is Ci -
h(a, B) = lim n 1\;\([0475) = —InJ(a,B). (25) The density of zeros on this circle can be found by setting

—00 ¢ = re*¥ and parametrising points on the circlesas: ¢.6.
Furthermore fora smaller than the transition value., Then, the second rule (15) gives the density of z@@3 on
J = a(1 — a) whereas forx > a,, J = a(1 — ). the circle as
|

Lod, 1
o2mé. df  2mE,

u(s) = %i Mmln¢ —Imlné&,] =

7 ds (26)

[

That is, in the complex- plane the zeros should become angle of-. Here the zeros clearly approach at an arigle
evenly distributed on a circle in the thermodynamic limit. suggesting a second-order transition. In fact, one finds the
Transforming the zeros of (24) obtained at different system density of zeros isj%s at a distance along this line, con-
sizes to the compleg-plane reveals this to be the case [23]. firming that the transition is second-order.

Finally, one can show that near the intersection point In summary, we have found that the Lee-Yang theory
between the curve of zeros in the complexplane and of first-order and continuous phase transitions applies to the
the positive reak axis, the zeros of (24) sit on the curve normalisation of the nonequilibrium asymmetric exclusion
T = % — (y* + % — &.)Y? wherex andy are the real and  process just as it does to the partition function of equilib-
imaginary parts ofv. For the casg} < 1, £ < 7 and the rium systems. Of course, this does not prove that the theory
transition is first order. One finds that the curve of zeros is is generally applicable, and so there is some value in investi-
smooth at the transition point = 3, and that the density of  gating other nonequilibrium steady states that exhibit phase
zeros is(1 —23)/[27B(1 — 3)] which is nonzero. These are  transitions.

precisely the properties of the equilibrium partition function ~ One such state is that initially studied by Arndt, Heinzel

zeros at a first-order transition point (see section II). and Rittenberg [35, 36]. This model comprisks, (M _)
At the continuous transition poin(> % and¢ = i), positively (negatively) ‘charged’ particles on a closed ring
the zeros pass through the reakxis along the linec = of N sites. When next to vacant sites, the positive particles

% — |y|. Recall from section Il that a transition of® order hop to the right and negative particles to the left at unit rate,
has the curve of zeros meeting the positive real axis at anwith hops in the opposite directions disallowed. Meanwhile,
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should two oppositely charged particles be next to one an-where the label above the arrow indicates the rate at which
other, the following transitions can occur the transitions occur. These dynamics are illustrated in
. Fig. 5.

+-=—+ R

:z@ o® Sb_E @cz

N N-1 N

Figure 5. The dynamics defining the AHR model: labels indicate the rates at which the hops denoted by arrows can occur. Note that th
N-site lattice is periodic.

Although a matrix product solution for this model is ought to apply directly here, without reference to the dis-
known to exist [36], it is technically difficult to work out the  cussion of section Ill. It was found [22] that when< ¢,
solution in its full generality [37]. However in the case of the zeros of (27) in the complexplane appear to lie along
either a single vacancy [38] or a single negative particle, i.e. ellipses, intersecting the positive real axis. Conversely, for
M_ = 1[39] the steady-state normalisation is known expl- largerq the zeros appear to describe hyperbolae that avoid
citly and phase transitions have been identified. In the casethe positive real axis. After investigating numerically the
M_ = 1the zeros of the partition function in the complgx-  density of zeros in the complexplane, Arndt concluded
plane have been studied [24] and, once again the continuoushat there is a fluid-fluid phase transition at some density-
phase transition present in this model is correctly describeddependent poinf. > 1.
by the Lee-Yang theory. Unfortunately, an exact asymptotic (i.e. larlyg analy-

A slightly different Lee-Yang analysis, that precedes the sijs of the generating function (27) shows that the only non-
work described above, has been used to study the nonequianalyticity occurs at the solid-fluid transition poigt= 1
lbrium phase transition that occurs at a finite density of va- [37]. However it was noted that physical quantities vary
cancies [22]. The motivation behind this study arose from rapidly, but continuously, at some poigt> 1. This phe-
computer simulations of the model [35, 36] for the case nomenon has been explained as an abrupt increase in a cor-
where the numbers of positive and negative particles wererelation length to an anomalously large, but finite value [41].
equal. In these simulations, three phases were initially iden-\We believe that resolution with the study of Arndt lies in the
tified: a ‘solid’ phase for smal}, a ‘fluid’ phase for largey fact that the system sizes considered in [22] were quite smalll
and a mixed phase comprising the background ‘fluid’ and a (v < 100), whereas it was suggested [37] that the distinc-

large mobile droplet in an intermediate regime< ¢ < g tion between this crossover behaviour and a genuine phase
whereq, is some density-dependent quantity. transition might become apparant only on¥ées increased

The steady-state normalisatidfiy ,; for the case of  above about0™ (an unfeasibly huge number?).
M, = M_ = M positive and negative particles on the It would be interesting, therefore, to extend the numer-

N-site ring is not known exactly (at least in the canonical jcal computation of zeros performed in [22] to much larger
ensemble), therefore Arndt [22] chose to study the generat-systems, to see how the ellipses noted above develop. For
ing function example it might well happen that instead of approaching
the positive-real fugacity axis, the zeros of (27) would ter-
=> MZn () (27)  minate a short distance away from it.

in the complex= plane. Physically this approach is equiva- |v.2 Reaction-diffusion systems and directed percolation
lent to placing the ring with nonequilibrium interactions in

chemical equilibrium with a particle reservoir at fixed fu-

gacity z. One can check that as one takes the thermody- A large and important class of models with stochas-

namic limit, the relative size of the fluctuations in the den- tic dynamics is provided by reaction-diffusion systéms

sity » = M/N vanish, and so working at fixed fugacity In contrast to driven diffusive systems, where the

is equivalent to working at fixed density (In fact, this is particle-particle interactions imply conservation of particles,

a standard ‘trick’ for dealing with closed systems in which reaction-diffusion systems are characterised by dynamics

the particle number is conserved, see e.g. [40].) that result in a change in particle number. Moreover there
The key point here, however, is thais an equilibrium are a number of such systems that have absorbing states i.e.

fugacity, and not a microscopic transition rate, and so the special configurations generally devoid of particles that once

Lee-Yang theory of phase transitions described in section llentered cannot be left. Phase transitions associated with

2As an area of ongoing research, new results are emerging continuously and there is no up-to-date review that contains them all. Nevertheless, one
consult [51, 13] for an introduction.
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whether the system has a finite probability of not being ab-  The structure of the normalisatidfi (¢, ) is even sim-
sorbed into such a state fall within tidérected percolation  pler in the case where particles are inserted onto and re-
and related universality classes [13]. We shall shortly dis- moved from the left boundary at ratasand 3 respectively
cuss the second order phase transition associated with théwith the right boundary remaining reflecting), and these
directed percolation university class in a little detail. Mean- rates satisfy the relation = x(¢~! — ¢ + ) [43]. In this
while as a simple example of a reaction-diffusion system, we caseC' is a2 x 2 matrix and, forg? # 1+ x, is diagonalisable
review a model for which the steady state that can be solvedwith eigenvalues

using the matrix product approach. The approach again pro-

vides us with an explicit expression for the normalisation M=1+r and X =q>. (30)
(22) by virtue of which we can analyse its zeros in the plane
of complex reaction rates. We see then immediately from (29) and an application of

The system in question [42] has for the dynamics at the rule (10) that there is a phase boundary in the complex
neighbouring bulk sites on a one-dimensional lattice the pro- Plane along the circlgy| = /1 + . Also, since one of the

cesses eigenvalues does not depend @nthe free energy:(q, x)
q q ! is a constant in one of the phases which, as the analysis of
oce — [ Je] [ Je] — oce . . . .
. o the normalisation zeros for the ASEP demonstrated, implies
e — €O e — Oe that the density of zeros on this circle is constant in the ther-
ce 1 e w0 "5 e modynamic limit. In turn, this implies that the phase transi-

tion is first order, as confirmed by explicitly calculating the

occurring at the rates indicated, and wittrepresenting a density profile in the two phases [43].

particle and> an empty lattice site. It was demonstrated [42] We finally turn our attention to a process that comprises
that the matrix product scheme used for the ASEP could symmetric decoagulation (that isp — ee andoe — ee

be ge_znera_llsec_i to cater for the s_teady state _Of the presen{aking place with equal probability in each direction) and
reaction-diffusion system on a lattice &f sites with reflect- spontaneous decay (— o) occurring at independent rates.
ing boundary conditions (i.e. which is neithgr periodic nor Introduced as a crude model of an epidemic [44], tua-
has particle mput or removal at the boundanes). . tact processs known to exhibit a transition from a phase in

' In the matrix prod.uct approzech, the nqrmahsaﬂﬁm IS which the absorbing state (empty lattice) is reached with cer-
given by a sca_la_r der_lved fr_oﬁi whereC IS a square ma- tainty to a phase in which there is some probability that the
trix. I C. s a finite dlme_nsmna;ln X m matrix and can be epidemic remains active forever in the thermodynamic (in-
diagonalised, the resulting expression fo¢ has the form finite system size) limit [45]. This transition occurs as the

m ratio between the decoagulation and decay rates is increase

Zn(q. k) =Y anA) (28)  beyond a critical value.
n=1

. n=0
in which \,, is thent™ eigenvalue o' and the coefficients

a, arise from the details of the way in which one obtains
a scalar from the matri€’V'. A normalisation of this form L , v
leads to a complex free energy O =3

“on=l

h(g,k) =1In [mgx{)\n}} (29) n=4

.. n=5
in which the maximum means the eigenvalue with the | ‘ ‘ . - R
largestabsolutevalue. Then, there is the possibility of A ‘ B - n=6

a phase boundary when the magnitude of the two largestrigyre 6. Directed percolation. Bonds are open (solid lines) with
eigenvalues o’ are equal. It turns out that for the closed probabilityp and closed (broken lines) with probability— p. A
reaction-diffusion system introduced aboggis a4 x 4 ma- fluid starts at layer = 0 and may flow only downwards through

trix that can be diagonalised wheh # 1 + « [42]. When open bonds. Bonds carrying the fluid are shown with thick lines, so

¢> = 1+ k, C cannot be diagonalised on account of the Lho?;:t)geigﬂgg on layern = G is connected to the origin whereas
largest eigenvalue being degenerate, and a phase transition is

found to occur at this point. Note that this scenario contrasts  Although not proven, it is widely accepted on the basis
with the transfer-matrix approach to one-dimensional equi- of simulation and approximate methods (such as series ex-
librium systems where the partition function is also written pansions) that the transition just described is continuous and
as a product of matrices. Since all elements of the transfercharacterised byirected percolationDP) exponents (see
matrix are positive the largest eigenvalue cannot become def13] for an in-depth discussion of these issues). Directed
generate and therefore there can be no phase transition [12ercolation itself [46] is a geometric construction designed
However there is no such restriction on the element§’of  to model fluid flow through a random porous medium under
and so eigenvalue crossing is permitted and nonequilibriumthe influence of gravity. Consider the rhombic lattice shown
one-dimensional phase transitions can occur. in Fig. 6 and imagine ‘pouring’ fluid in from the uppermost
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site. The fluid is allowed to flow along a bond pointing diag- models expected to belong to its universality class has been
onally downwards and then only if itis open. Each bond has solved exactly.

a probabilityp of being open (and hence a probability- p Recently an attempt has been made to shed further light
of being blocked), and the state of each bond is independenbn the DP transition by studying the zeros of the percolation
of any other and may not change with time. probability P, (p) [47, 48]. At first glance, a connection be-

The main quantity of interest in this system is the per- tween this probability and a partition function is not obvious.
colation probability P, (p) that the fluid can penetrate to However, associating with each site a ‘spin’ statethat is
a depthn in the medium (see Fig. 6), averaged over all up if sitei is connected to a point on thé" layer and down
possible bond configurations. The order parameter for theotherwise, yields a form foP, (p) that has the structure of a
model is the probabilityP., (p) that the fluid can penetrate transfer-matrix representation of a partition function for an
infinitely far given a bond probability. If p is below some  equilibrium system with three-spin interactions [49].
critical percolation thresholg., the fluid only ever pene- It is not clear that being able to giv&,(p) the appear-
trates a finite distance—i.e. a layer becomes dry with cer-ance of a partition function necessarily implies that the Lee-
tainty. However, for largep, the order parameter becomes Yang theory should hold. In particula?,, (p) has some fea-
nonzero, growing a®..(p) ~ |p — p.|® with 8 ~ 0.276 tures that set it apart from ‘standard’ equilibrium partition
near the critical point. The importance of the DP transition functions, in that it does not grow exponentially in the num-
is that a wide range of models that have a transition into anber of bondsV, at least in the range < p < 1. Itis also
absorbing state are expected to have that transition charactincertain whether a free energy can meaningfully be defined
terised by the DP exponents, one of whici#id.3]. Despite for this system, especially in the regior< p < p. in which
a huge amount of interest in directed percolation, none of thelim,, ,, P,,(p) = 0.
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Figure 7. Zeros of the percolation probability on the directed percolation lattice up to depihiss. Taken from [48] in which the symbol
t is used where we use

Given these observations, it is perhaps not surprising that By considering the sequences of zeros approaching the
the zeros ofP, (p) calculated numerically for < 15 (lead- positive real axis, one can estimate the critical ppinand
ing to polynomials of degree up & = 240) have a more  the density of zeros as it is reached [48]. The latter yields
complicated distribution than for the (exactly solved) mod- a prediction for one of the DP critical exponents and one
els considered so far. As is evident from Fig. 7, which was finds good agreement with the most precise estimates of
presented in [48], the zeros do not lie along a single curveboth the transition point and the associated exponent ob-
but along a sequence of curves meeting at the critical pointtained through other means. Hence we have further evidence
(as well as inside some region that encloses part of the reafor the applicability of Lee and Yang'’s ideas concerning par-
axis forp > 2). tition function zeros to a much wider range of statistical dis-
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tributions than equilibrium steady states. merical solutions for small systems were used successfully
to estimate the transition point and density of zeros as it is
approached. From this information one learns about the na-

V Summary and outlook ture of the phase transition and, for example, can estimate
the values of critical exponents. This is a common technique

In this work we have revisited the Lee-Yang description of in equilibrium statistical physics (see e.g. [50]) and it may

equilbrium phase transitions with a view to seeing whether be the case that stochastic processes unyielding to analytica

the ideas apply to more general nonequilibrium transitions. treatment could be understood this way.
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