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We present a pedagogical account of the Lee-Yang theory of equilibrium phase transitions and review recent
advances in applying this theory to nonequilibrium systems. Through both general considerations and explicit
studies of specific models, we show that the Lee-Yang approach can be used to locate and classify phase
transitions in nonequilibrium steady states.

I Introduction

In this work we seek a mathematical understanding of phase
transitions in the steady state of stochastic many-body sys-
tems. Systems at equilibrium with their environment pro-
vide examples of such steady states, and the mechanisms un-
derlying equilibrium phase transitions are long known and
understood. Experimentally, one can distinguish between
two types of transition: the first-order transition at which
there is phase coexistence, e.g. between a high-density solid
and a low-density fluid, and the continuous transition at
which fluctuations and correlations grow to such an extent
as to be macroscopically observable.

From a thermodynamical perspective, one can under-
stand first-order transitions by associating with each phase
a free energy. For a given set of external parameters, the
phase ‘chosen’ by the system is that with the lowest free
energy, and so a phase transition occurs when the free ener-
gies of two (or more) phases are equal. The sudden changes
in macroscopically measurable quantities that take place at
first-order transitions are described mathematically as dis-
continuities in the first derivative of the free energy. Discon-
tinuities in higher derivatives relate to continuous (higher-
order) phase transitions.

The tools of equilibrium statistical physics allow one—
in principle at least—to express the free energy solely in
terms of microscopic interactions. More specifically, the
free energy is given by the logarithm of apartition func-
tion, a quantity that normalises the steady-state probability
distribution of microscopic configurations. Initially it was
not universally accepted that this approach could faithfully
describe phase transitions, in particular the first-order solid-
fluid transition [1]. In order to show that the statistical me-
chanical approachcan reproduce the correct discontinuities
in the free energy at a first-order transition, Lee and Yang
[2] introduced a description of phase transitions concerning

zeros of the partition function when generalised to the com-
plex plane of an intensive thermodynamic quantity. Initially,
the theory was couched in terms of zeros in the complex
fugacity plane which is appropriate for fluids in the grand
canonical (fluctuating particle number) ensemble. However,
by mapping a lattice gas onto the Ising model [3], the theory
was found to hold equally well for a magnet in a fixed mag-
netic field. Later [4-6] it became clear that the distribution
of zeros in the complex temperature plane can reveal infor-
mation about phase transitions in the canonical ensemble.

In section II we present a brief, self-contained discus-
sion of the Lee-Yang theory of equilibrium phase transitions
which relates nonanalytic behaviour in the free energy to ze-
ros of the partition function. In the remainder of this article,
we move our attention to phase transitions innonequilib-
rium steady states, that is, those that carry currents of mass,
energy or some other quantity. We give therefore a very
brief introduction to the established practice of modelling
nonequilibrium physics through stochastic dynamics in sec-
tion III. In particular, we will identify a candidate quantity
for use in place of an equilibrium partition function when
performing an Lee-Yang analysis of phase transitions. Fi-
nally, in section IV we review recent work in which the
Lee-Yang theory has been successfully applied to specific
nonequilibrium phase transitions.

II Overview of Lee-Yang theory of
equilibrium phase transitions

In this section we recount the relationship of zeros of a
partition function to phase transitions in the system it de-
scribes. We present here a brief but self-contained tour of
the key points. For more detail (and mathematical rigour)
the reader is referred to textbooks, such as [7] or, for a more
advanced presentation, [8], as well as early treatments of the
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subject [2-6].
For concreteness we shall describe the theory in terms of

a simple model system ofN spins in thermal contact with a
heat reservoir. In this model system the energy of the sys-
tem can take valuesE = nε with n = 0, 1, 2, . . . , M and
the number of microstates corresponding to thenth energy
level isg(n). The canonical partition function is given by

ZN (β) =
M∑

n=0

g(n) exp(−βnε) (1)

whereβ is the inverse temperature. To investigate the zeros
of this partition function, it is useful to make the change of
variablez = e−βε. Then, the partition function is explicitly
a polynomial inz of degreeM and can be factorised as

ZN (z) =
M∑

n=0

g(n)zn = κ

M∏
n=1

(
1− z

zn

)
. (2)

Clearly the quantitieszn are theM zeros of the partition
functionZN (z); meanwhile,κ is a constant which we can
safely ignore in the following.

Since all theg(n) are positive, no zero ofZN (z) can be
real and positive: that is, the zeroszn will generally lie in the
complex plane away from the physical values ofz which lie
on the positive real axis. We now define for all complexz
exceptthe pointsz = zn the (complex) free energy

hN (z) ≡ ln ZN (z)
N

. (3)

Using (2) we rewrite this as

hN (z) =
1
N

M∑
n=1

ln
(

1− z

zn

)
(4)

and note that a Taylor series expansion ofhN (z) around a
pointz 6= zn has a finite radius of convergence given by the
distance to the nearest zero fromz. This then implies that
thathN (z) can be differentiated infinitely many times over
any region of the complex plane that is devoid of partition
function zeros. Since we identify a phase transition through
a discontinuity in a derivative of the free energy, we see that
such a transition can only occur at a pointz0 in the complex
plane if there is at least one zero of the partition function
ZN (z) within any arbitrarily small region around the point
z0.

Clearly this scenario is impossible if the number of zeros
M is finite, except at the isolated pointszn where the free
energy exhibits a logarithmic singularity. Since such a point
cannot lie on the positive realz axis, there is no scope for
a phase transition in a finite spin system, such as the sim-
ple example (1). On the other hand, if the partition function
zeros accumulate towards a pointz0 on the real axis as we
increase the number of spinsN to infinity there is the possi-
bility of a phase transition.

In order to deal with the thermodynamic limit (see [8]
for rigorous considerations) we shall assume that the limit

h(z) = lim
N→∞

ln ZN (z)
N

(5)

exists and we may write

h(z) =
∫

dz′ρ(z′) ln
(
1− z

z′

)
(6)

whereρ(z) is the local density of zeros in the complex-z
plane in the thermodynamic limit.

Since the imaginary part of this complex free energy
h(z) is multi-valued it will at times be more convenient to
work with thepotentialϕ(z) defined as

ϕ(z) ≡ Re h(z) =
∫

dz′ρ(z′) ln
∣∣∣1− z

z′

∣∣∣ . (7)

An expression for the densityρ(z) in terms of the poten-
tial ϕ(z) is easily obtained once one recognises thatln |z|
is the Green function for the two-dimensional Laplacian.
Specifically, ifz = x + iy, we have

∇2 ln |z| ≡
(

∂2

∂x2
+

∂2

∂y2

)
ln |x + iy| = 2πδ(x)δ(y) .

(8)
Using this expression, we can take the Laplacian of both
sides of (7) to find

ρ(z) =
1
2π
∇2ϕ(z) . (9)

Such an equation is familiar from electrostatics and soϕ(z)
is analogous to an electrostatic potential.

In analogy to electrostatics, as long as we can integrate
ρ(x) over bounded regions containing any singularities ofρ,
the potential will be a continuous function [9]. The signifi-
cance of this statement is that we can derive a rule for locat-
ing phase boundaries given a partition function. Let us sup-
pose that around pointsz1 andz2 in the complex plane, one
has (analytic) expressions for the potentialϕ1(z) andϕ2(z)
such thatϕ1(z) 6≡ ϕ2(z) (i.e. not the same function over the
entirety of the complex plane). In order for the potential to
be continuous at all points on the complex plane, we must
have a phase boundary at those values ofz for which the
condition

ϕ1(z) = ϕ2(z) (10)

holds. This is basically the definition of a transition men-
tioned above in the introduction. Sinceϕ1 andϕ2 are dif-
ferent functions, some derivatives ofϕ(z) will not exist at
these values ofz and we expect the density of zeros at these
points to be non-zero. (It is also possible for zeros to be
present at other points in the complex plane, but we do not
need to consider this possibility here.)

Typically, a solution of (10) describes a curveC that in-
tersects the positive realz axis at a pointz0. Having already
established that we require zeros to accumulate at the point
z0 in the thermodynamic limit for a physical phase transition
to take place, we are interested in the line density of zeros



466 Brazilian Journal of Physics, vol. 33, no. 3, September, 2003

per unit length of this curve. We introduce the arclength
s which measures the distance alongC from the transition
pointz0.

To obtain an expression for the line density of zerosµ(s)
along the curveC, consider a short section ofC of lengthδs
enclosed by an areaA that has two sides parallel toC and
the other two sides perpendicular toC—see Fig. 1. Integrat-

ing the densityρ(z) over this area we have

∫

A

dzρ(z) = µ(s)δs . (11)

Meanwhile, we have from (9) and an application of the di-
vergence theorem that

c
∫

A

dzρ(z) =
1
2π

∫

A

dz∇ · [∇ϕ(z)] =
δs

2π
[∇ϕ2(z)−∇ϕ1(z)] · n̂ (12)

d

in which the functionsϕ1(z) andϕ2(z) relate to the limiting
values ofϕ(z) as the pointz on the curveC is approached
from either side, and the vectorn̂ is the unit vector normal
to C at that point.

zIm

Re z

δ s

s=0

φ1 φ2

C

A

Figure 1. Small areaA covering a lengthδs of the curve of zerosC
required to derive a relationship for the line densityµ(s) of zeros
along the curve.

Recall thatϕ(z) is the real part of the complex free en-
ergyh(z) and therefore, away from any zeros of the partition
function, satisfies the Cauchy-Riemann equations

∂xϕ(z) = ∂yψ(z) and ∂yϕ(z) = −∂xψ(z) (13)

in whichψ(z) is the imaginary part ofh(z) andz = x + iy.
Then we have that

∇ϕ(z) · n̂ = ∇ψ(z) · t̂ (14)

wheret̂ is the unit vector tangent to the curveC at the point
z. Thus we recognise the scalar product in (12) as the di-
rectional derivative of the imaginary part of the free energy

h(z) along the curveC. Putting this together with (11) we
find that

µ(s) =
1
2π

d
ds

[ψ2(z)− ψ1(z)] (15)

in whichψ(z) = Im[h(z)] and the subscripts indicate oppo-
site sides of a phase boundary.

Let us now assume that in the thermodynamic limit,
there is a phase transition at the pointz0. Then, either side
of the transition the free energy can be written as

f1,2(z̃) = h(z0) + b1,2z̃ + c1,2z̃
2 + . . . (16)

wherez̃ = z − z0 andf1(z̃) is valid forRe z̃ < 0 andf2(z̃)
valid for Re z̃ > 0. Note that for the free energy to be real
along the realz axis, the coefficientsb andc must also be
real. From the criterion that the real part ofh(z) is continu-
ous across a phase boundary, we find that the boundary lies
along the curve

ỹ2 = x̃2 +
b2 − b1

c2 − c1
x̃ (17)

wherex̃ andỹ are the real and imaginary parts ofz̃ respec-
tively. We consider the conditions under which a discon-
tinuous (first order) or continuous (second or higher order)
transition appear.

First-order transition
For the case whereb1 6= b2, and the free energy has a discon-
tinuity in its first derivative, the curve of zeros is a hyperbola
that passes smoothly through the transition pointz0. Hence
the tangent to the curve of zeros is parallel to the imaginary
axis atz0 and using the rule (15) we find that

c

µ(0) =
1
2π

d
dỹ

[(b2 − b1)ỹ + 2(c2 − c1)x̃ỹ]
∣∣∣∣
x̃=ỹ=0

=
b2 − b1

2π
. (18)

d
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Hence we see that the density of zeros at the transition point
z0 is nonzero at a first-order phase transition (i.e. one at
which the first derivative of the free energy is discontinu-
ous).

Second-order transition
If b1 = b2 but c2 6= c1 we have that the curveC obeys the
equationỹ = ±x̃. Since the zeros of the partition function
come in complex-conjugate pairs, we find that the zeros ap-
proach the pointz0 along straight lines that meet at a right-
angle. If we consider the linẽx = ỹ = s/

√
2, we find from

(15) that

µ(s) =
1
2π

d
ds

(c2 − c1)s2 =
c2 − c1

π
s . (19)

This reveals that at a second-order phase transition, the den-
sity of partition function zeros decreases linearly to zero at
the phase transition point.

Higher-order transition

More generally, one can consider a difference in the free en-
ergies either side of the transition point to have the leading
behaviourf2(u) − f1(u) ∼ uα. Then the condition that
Re[f2(u) − f1(u)] = 0 suggests that the curve of zeros ap-
proaches the real axis at an angleπ

2α . Unlessα = 1, the
curve does not pass smoothly through the real axis. In any
case, the imaginary part of the free energy difference grows
as|u|α giving rise to a density of zeros that behaves assα−1

for small arclengths. This means that for the density of
zeros to be finite at the transition point we must haveα ≥ 1.

In this section we have summarised what we refer to as
the Lee-Yang theory of phase transitions. This describes
how partition function zeros are related to phase transitions:
the accumulation of zeros at a point along the physical (real,
positive) axis of the control parameter gives the critical value
and the density of zeros near to the accumulation point de-
termines the order of the phase transition.

We derived a rule (10) for locating phase boundaries and
a further rule (15) for finding the density of zeros along such
boundaries. At a first-order transition there is a nonzero den-
sity of zeros at the transition point whereas the density de-
cays as a power-law to zero at the transition point when the
associated phase transition is continuous.

Although we have discussed the theory of partition func-
tion zeros with reference to the specific system described
by the partition function (1) we should note that the ideas
hold much more generally. Firstly, one is not restricted to
the canonical ensemble: indeed in the original exposition of
the theory [2], Lee and Yang worked in the grand canonical
ensemble in which the quantity generalised to the complex
plane was not a function of the temperature but rather the
chemical potential. Of course, in the equilibrium theory,
these intensive field-like quantities play similar mathemat-
ical roles and so there is no reason why the Lee-Yang theory
shouldn’t apply to all of them. For historical reasons, zeros
in the complex fugacity (or chemical potential) plane are of-
ten referred to as Lee-Yang zeros [2, 3] and those in the com-
plex temperature plane Fisher zeros [4]. Also it appears that

one can just as easily generalise physical ‘field-like’ vari-
ables (such as temperature) or ‘fugacity-like’ variables (such
as the quantityz considered above) to the complex plane
without altering the properties of the partition-function zero
densities at first-order and continuous phase transitions de-
scribed above.

Despite the apparently wide generality of the Lee-Yang
theory of equilibrium phase transitions, proving its validity
in the general case is a difficult task (although we note re-
cent work in this direction [10]). Therefore, most rigorous
results, such as those discussed in [8], tend to rely on spe-
cific properties of a particular partition function. Perhaps the
most spectacular of these is that obtained by Lee and Yang in
their original work. Specifically, they found that the zeros of
the partition function for an Ising ferromagnet in an external
field h all lie on the circle| exp(h)| = 1. The significance
of this result, which does not depend on the number of spa-
tial dimensions, lattice structure and details of the spin-spin
interactions, is that if there is a phase transition induced by
varying the magnetic fieldh, it can only occur at the point
h = 0, and then only if the partition function zeros accumu-
late there in the thermodynamic limit.

III Nonequilibrium steady states

A nonequilibrium steady state differs from its equilibrium
counterpart in that it may admit a flow of, say, energy
or mass. More generally, these states have a circulation
of probability in the space of microscopic configurations.
In the past few years, it has become customary to model
nonequilibrium systems as stochastic processes, i.e. simple
models defined by local dynamical rules. Extensive study of
these has revealed a range of phenomena including nonequi-
librium phase transitions [11-17]. We present below the key
elements of this approach to nonequilibrium physics with a
view to understanding nonequilibrium phase transitions in
the framework of the Lee-Yang theory described above. In
particular, we will need to propose a quantity to use in place
of the equilibrium partition function (1).

Let us begin by discussing how one might realise the
dynamics of theequilibrium spin system of the previous
section, for example in a computer simulation. The aim
is to generate a sequence of spin configurations such that
the frequency with which a particular configurationC is
generated is proportional to the Boltzmann weightf(C) =
exp[−βE(C)] whereE(C) is the energy of configurationC.
Usually this is achieved by choosing the next configuration
C′ from the current configurationC with a probability pro-
portional to the transition rateW (C → C′) that satisfies the
detailed balance condition

f(C)W (C → C′) = f(C′)W (C′ → C) ∀ C, C′ . (20)

Apart from the fact that this choice of transition rates guar-
antees convergence to the desired equilibrium distribution of
microstates [18], it also has the feature that the mean current
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of any quantity in the steady state is zero (as it should be at
equilibrium).

Since we are interested in nonequilibrium systems that
support steady-state currents we must work with transition
rates that do not satisfy the condition (20) or equivalent cri-
teria (given in e.g. [19, 14, 17]). Clearly one has a lot of
freedom in the choice of transition rates, and so in practice
one often devises dynamics that seem physically reasonable
given the phenomena one is trying to describe. Later, in sec-
tion IV we will give concrete examples in the form of driven
diffusive systems, in which particle moves are biased in a
particular direction to model the effect of an external field.

In order to find the set of steady-state weights associ-
ated with a particular set of prescribed transition rates, we
impose the condition that the total flow of probability into
a configurationC is balanced by the corresponding outflow.
That is, we must have

∑

C′ 6=C
[f(C′)W (C′ → C)− f(C)W (C → C′)] = 0 (21)

for every configurationC. In general there might be more
than one solution to this set of equations for the weights
f(C), each corresponding to a steady state that is reached
with some probability that depends on the starting configu-
ration. We shall assume for simplicity that the steady state
is unique and therefore reached with certainty from every
initial state. A sufficient condition for a unique steady state
is that it is possible to reach each configuration from every
other via a sequence of microscopic transitions [17].

Once the steady state weightsf(C) are known from (21)
one can obtain the corresponding probability distribution of
microscopic configurationsP (C) through a normalisation

Z =
∑

C
f(C) (22)

such thatP (C) = f(C)/Z. Then, one can compute av-
erages of physical quantities and look for nonanalyticities
to locate nonequilibrium phase transitions as one varies the
transition rates. At equilibrium we saw that the zeros of the
function (1) that normalises the Boltzmann weights encodes
the phase behaviour of the system. Thus we might hope that
more generally, the zeros of the normalisation (22) will pro-
vide information about nonequilibrium phase behaviour.

In section IV we review recent work that suggests that
the steady-state phase behaviour of certain nonequilibrium
driven diffusive and reaction-diffusion systemsis correctly
described by the zeros of the normalisationZ. Although
we are unaware of any rigorous argument for this to be the
case, some suggestive evidence is provided by an observa-
tion made in [20, 17] which we now outline.

First note that the equation (21) is linear in the weights
f(C). This implies that these weights, and hence the nor-
malisation, can always be written as sums of products of the
transition ratesW (C → C′). Now, by numbering the micro-
scopic configurations, one can construct the transition rate
matrixW whose off-diagonal elementsWnm are equal to

the transition rates from configurationm to n and the diag-
onal elementsWnn are negative and express the total rate
of departure from configurationn. Using elementary re-
sults from matrix theory (see [20, 17] for the details), one
can show that an expression for the normalisationZ that is
polynomial in the transition ratesW(C → C′) is

Z =
∏

λi 6=0

(−λi) (23)

in whichλi are the eigenvalues of the matrixW.
With each of the eigenvaluesλi is associated an eigen-

vector ofW describing a ‘mode’ of the stochastic process
that decays exponentially with a timescaleτi = 1/|λi|
[17]. We have assumed that the process described byW
has only one steady state, and so only one of the eigenval-
ues is equal to zero (since clearly the relaxation time of a
steady state is infinite). Equation (23) states that the nor-
malisationZ can be written as a product of the remaining
eigenvalues. Now, at a phase transition we expect diverg-
ing timescales: physically one encounters metastable (long-
lived) states near first-order transition points [21] and long
correlation lengths and times at continuous transitions. The
presence of long timescalesτi implies small eigenvaluesλi

of W and, from (23), that the normalisationZ approaches
zero. Hence it appears that it is appropriate to consider the
zeros ofZ as given by (22) to locate nonequilibrium phase
transitions.

IV Application of Lee-Yang theory to
nonequilibrium phase transitions

We shall now review recent progress in applying the Lee-
Yang theory to nonequilibrium phase transitions. We con-
sider first in section IV.1 driven diffusive systems, where
most work has so far been focussed [21-23]. An appealing
feature, discussed in more detail below, is that some one-
dimensional cases have been solved exactly, the normalisa-
tion (23) calculated, and nonequilibrium phase transitions
analysed. (The existence of one-dimensional phase transi-
tions contrasts with the case of one-dimensional equilibrium
models which do not admit phase transitions if the interac-
tions are short-ranged.) Then in section IV.2 we move onto
reaction-diffusion systems and directed percolation. We do
not endeavour to describe all possible nonequilibrium dy-
namics in the following — for example, self-organised criti-
cality has also been studied using a Lee-Yang approach [25].

IV.1 Driven diffusive systems

In their original papers on partition function zeros, Lee
and Yang [2, 3] made use of the mapping between the Ising
model of a magnet and the lattice gas. Essentially one asso-
ciates up-spins with particles and down-spins with vacancies
so that a positive interaction strengthJ in the Ising model re-
sults in a particle-particle attraction in the lattice gas, and a
negative interaction strength gives rise to repulsive gas par-
ticles. Note that there is implicitly at most one particle per
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lattice site, so there is a hard-core exclusion in the lattice
gas.

As discussed in section III, one can realise the dynamics
of the lattice gas through a set of transition rates that sat-
isfy the detailed balance condition (20) with respect to the
Boltzmann distribution. Thirty years after Lee and Yang’s
work, Katz, Lebowitz and Spohn (KLS) [26, 27] introduced
adrivenlattice gas model in which the rate at which particles
hop in the direction of an external field is enhanced and the
hop-rate against the field is suppressed. This model is well-
studied and many results are discussed in [28]. The princi-
pal effect of the driving field is to introduce anisotropy in the
phase-separation that occurs below the critical temperature
associated with the spontaneous magnetisation of the Ising
ferromagnet (J > 0) in two or more spatial dimensions and
in the critical exponents that characterise this transition.

As yet, the KLS model remains unsolved for general
interaction strength, although in one dimension the steady
state is known for some parameters [29]. The particular
case of one dimension and zero interaction strengthJ = 0,
known as the asymmetric simple exclusion process (ASEP),
had already been studied—at least at a mean-field level—by
biophysicists interested in the kinetics of biopolymerisation

[30]. The mean-field approach predicts phase transitions in
the steady state as parameters controlling the rate of inser-
tion and extraction of particles at the boundaries are varied
[31]. The existence of these phase transitions is confirmed
through an exact solution of the ASEP [29-31], achieved
using a powerful matrix product approach [32, 34] which
has subsequently been used to solve many generalisations
of the ASEP. The details of the matrix product method are
not necessary for the following—suffice to say that one ends
up calculating a normalisation proportional to (23) through
a product of matrices, often of infinite dimension. In this
way one obtains some explicit formulas for the normalisa-
tion (22) which we shall use below1.

The asymmetric exclusion process with open boundaries
is perhaps the simplest exactly solved nonequilibrium model
that exhibits both a first-order and continuous phase transi-
tion in its steady state. Therefore it is an ideal candidate
for testing the hypothesis outlined in section III that zeros
of the normalisation should accumulate towards the positive
real axis in the complex plane of transition rates. Before
outlining the results of this analysis (the details of which are
presented in [23]) we recall the definition of the ASEP with
open boundaries.

β1 11
α

NN−121
Figure 2. The dynamics defining the ASEP. The lattice is open and particles may be inserted or extracted at the boundaries as shown.

In this system, a particle on anN -site lattice can hop one
site to the right at unit rate, as long as the receiving site is
empty. Meanwhile, particles are inserted onto the leftmost
lattice site (if empty) at a rateα and removed from the right-
most site (if occupied) at a rateβ — see Fig. 2. Along the
line α = β < 1

2 there is a coexistence between a high- and a
low-density phase, with a shock separating the two. This is

indicative of a first-order transition. Meanwhile, along the
linesα > 1

2 , β = 1
2 andβ > 1

2 , α = 1
2 there is a continuous

transition (i.e. one accompanied by diverging lengthscales)
to a phase in which the particle current is independent ofα
andβ. The phase diagram for the model is shown in Fig. 3.

The steady-state normalisation (22) for the ASEP with
N sites has been calculated [32] as

c

ZN (α, β) =
N∑

p=1

p(2N − 1− p)!
N !(N − p)!

(1/β)p+1 − (1/α)p+1

(1/β)− (1/α)
. (24)

d

It is a simple matter to use a computer algebra package
to solve this equation for its zeros in the complex-α plane
at fixed N and β. (Equivalently, one could look at the
complex-β zeros at fixedα sinceZN (α, β) = ZN (β, α).)
In Fig. 4 plots of the zeros are shown forβ = 1, where
a continuous transition occurs atα = 1

2 , and forβ = 1
3 ,

where a first order transition occurs atα = 1
3 . We imme-

diately notice that the curve of zeros seems to intersect the
real positiveα axis at the correct transition point. Further-
more, the density of zeros near the first-order transition point
(α = β = 1

3 ) seems to be uniform and nonzero, whereas
the density of zeros near the second-order transition point
(α = 1

2 , β = 1) seems to decrease to zero. Both of these
observations are in accord with the results known for equi-

1As yet, there is no comprehensive review of applications of the matrix-product method, although one should consult [34, 13, 15, 16] and references
therein.
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librium partition function zeros discussed in section II.

2
1

2
1 α

β

(ii) (iii)

(i)

Figure 3. The phase diagram of the ASEP in the space spanned by
the boundary ratesα andβ. The thick line represents a first-order
phase boundary, the thin line a continuous phase boundary.

As shown in [23], the distribution of zeros in the ther-
modynamic limit can be calculated once one knows that, for
largeN , the normalisation behaves asZN ∼ AJ−NNγ . In
this expression,A, J andγ depend onα andβ and the quan-
tity J is the current of particles across the lattice. Thus, the
complex free energy (3) in the limitN →∞ is

h(α, β) = lim
N→∞

ln ZN (α, β)
N

= − ln J(α, β) . (25)

Furthermore forα smaller than the transition valueαc,
J = α(1− α) whereas forα > αc, J = αc(1− αc).

Figure 4. Zeros of the normalisation in the ASEP in the complex-α
plane andβ = 1

3
, 1 and lattice sizeN = 300.

Although an electostatic analogy was used in [23] to find
the zero distribution, the mathematical content is the same
as that used to derive the two rules (10) and (15) in sec-
tion II. Applying the first rule, which demands that the real
part of the free energy be continuous across a phase bound-
ary, we find that the zeros ofZN (α, β) should lie along the
curve|α(1 − α)| = αc(1 − αc). It is therefore convenient
to change variable toξ = α(1−α). Then, in the complex-ξ
plane, the zeros lie on the circle|ξ| = ξc = αc(1 − αc).
The density of zeros on this circle can be found by setting
ξ = reiθ and parametrising points on the circle ass = ξcθ.
Then, the second rule (15) gives the density of zerosµ(s) on
the circle as

c

µ(s) =
1
2π

d
ds

[Im ln ξ − Im ln ξc] =
1

2πξc

d
dθ

θ =
1

2πξc
. (26)

d

That is, in the complex-ξ plane the zeros should become
evenly distributed on a circle in the thermodynamic limit.
Transforming the zeros of (24) obtained at different system
sizes to the complex-ξ plane reveals this to be the case [23].

Finally, one can show that near the intersection point
between the curve of zeros in the complex-α plane and
the positive realα axis, the zeros of (24) sit on the curve
x = 1

2 − (y2 + 1
4 − ξc)1/2 wherex andy are the real and

imaginary parts ofα. For the caseβ < 1
2 , ξc < 1

4 and the
transition is first order. One finds that the curve of zeros is
smooth at the transition pointα = β, and that the density of
zeros is(1− 2β)/[2πβ(1−β)] which is nonzero. These are
precisely the properties of the equilibrium partition function
zeros at a first-order transition point (see section II).

At the continuous transition point (β ≥ 1
2 andξ = 1

4 ),
the zeros pass through the realα axis along the linex =
1
2 − |y|. Recall from section II that a transition ofnth order
has the curve of zeros meeting the positive real axis at an

angle of π
2n . Here the zeros clearly approach at an angleπ

4
suggesting a second-order transition. In fact, one finds the
density of zeros is4π s at a distances along this line, con-
firming that the transition is second-order.

In summary, we have found that the Lee-Yang theory
of first-order and continuous phase transitions applies to the
normalisation of the nonequilibrium asymmetric exclusion
process just as it does to the partition function of equilib-
rium systems. Of course, this does not prove that the theory
is generally applicable, and so there is some value in investi-
gating other nonequilibrium steady states that exhibit phase
transitions.

One such state is that initially studied by Arndt, Heinzel
and Rittenberg [35, 36]. This model comprisesM+ (M−)
positively (negatively) ‘charged’ particles on a closed ring
of N sites. When next to vacant sites, the positive particles
hop to the right and negative particles to the left at unit rate,
with hops in the opposite directions disallowed. Meanwhile,
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should two oppositely charged particles be next to one an-
other, the following transitions can occur

+− q→ −+ −+ 1→ +−

where the label above the arrow indicates the rate at which
the transitions occur. These dynamics are illustrated in
Fig. 5.

1 qq 1 1

21 N−1 N 1N

Figure 5. The dynamics defining the AHR model: labels indicate the rates at which the hops denoted by arrows can occur. Note that the
N -site lattice is periodic.

Although a matrix product solution for this model is
known to exist [36], it is technically difficult to work out the
solution in its full generality [37]. However in the case of
either a single vacancy [38] or a single negative particle, i.e.
M− = 1 [39] the steady-state normalisation is known expl-
citly and phase transitions have been identified. In the case
M− = 1 the zeros of the partition function in the complex-q
plane have been studied [24] and, once again the continuous
phase transition present in this model is correctly described
by the Lee-Yang theory.

A slightly different Lee-Yang analysis, that precedes the
work described above, has been used to study the nonequi-
lbrium phase transition that occurs at a finite density of va-
cancies [22]. The motivation behind this study arose from
computer simulations of the model [35, 36] for the case
where the numbers of positive and negative particles were
equal. In these simulations, three phases were initially iden-
tified: a ‘solid’ phase for smallq, a ‘fluid’ phase for largeq
and a mixed phase comprising the background ‘fluid’ and a
large mobile droplet in an intermediate regime1 < q < qc

whereqc is some density-dependent quantity.
The steady-state normalisationZN,M for the case of

M+ = M− = M positive and negative particles on the
N -site ring is not known exactly (at least in the canonical
ensemble), therefore Arndt [22] chose to study the generat-
ing function

ZN (z, q) =
∑

M

zMZN,M (q) (27)

in the complex-z plane. Physically this approach is equiva-
lent to placing the ring with nonequilibrium interactions in
chemical equilibrium with a particle reservoir at fixed fu-
gacity z. One can check that as one takes the thermody-
namic limit, the relative size of the fluctuations in the den-
sity r = M/N vanish, and so working at fixed fugacityz
is equivalent to working at fixed densityr. (In fact, this is
a standard ‘trick’ for dealing with closed systems in which
the particle number is conserved, see e.g. [40].)

The key point here, however, is thatz is an equilibrium
fugacity, and not a microscopic transition rate, and so the
Lee-Yang theory of phase transitions described in section II

ought to apply directly here, without reference to the dis-
cussion of section III. It was found [22] that whenq < qc

the zeros of (27) in the complex-z plane appear to lie along
ellipses, intersecting the positive real axis. Conversely, for
largerq the zeros appear to describe hyperbolæ that avoid
the positive real axis. After investigating numerically the
density of zeros in the complex-z plane, Arndt concluded
that there is a fluid-fluid phase transition at some density-
dependent pointqc > 1.

Unfortunately, an exact asymptotic (i.e. largeN ) analy-
sis of the generating function (27) shows that the only non-
analyticity occurs at the solid-fluid transition pointq = 1
[37]. However it was noted that physical quantities vary
rapidly, but continuously, at some pointq > 1. This phe-
nomenon has been explained as an abrupt increase in a cor-
relation length to an anomalously large, but finite value [41].
We believe that resolution with the study of Arndt lies in the
fact that the system sizes considered in [22] were quite small
(N ≤ 100), whereas it was suggested [37] that the distinc-
tion between this crossover behaviour and a genuine phase
transition might become apparant only onceN is increased
above about1070 (an unfeasibly huge number!).

It would be interesting, therefore, to extend the numer-
ical computation of zeros performed in [22] to much larger
systems, to see how the ellipses noted above develop. For
example it might well happen that instead of approaching
the positive-real fugacity axis, the zeros of (27) would ter-
minate a short distance away from it.

IV.2 Reaction-diffusion systems and directed percolation

A large and important class of models with stochas-
tic dynamics is provided by reaction-diffusion systems2.
In contrast to driven diffusive systems, where the
particle-particle interactions imply conservation of particles,
reaction-diffusion systems are characterised by dynamics
that result in a change in particle number. Moreover there
are a number of such systems that have absorbing states i.e.
special configurations generally devoid of particles that once
entered cannot be left. Phase transitions associated with

2As an area of ongoing research, new results are emerging continuously and there is no up-to-date review that contains them all. Nevertheless, one can
consult [51, 13] for an introduction.
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whether the system has a finite probability of not being ab-
sorbed into such a state fall within thedirected percolation
and related universality classes [13]. We shall shortly dis-
cuss the second order phase transition associated with the
directed percolation university class in a little detail. Mean-
while as a simple example of a reaction-diffusion system, we
review a model for which the steady state that can be solved
using the matrix product approach. The approach again pro-
vides us with an explicit expression for the normalisation
(22) by virtue of which we can analyse its zeros in the plane
of complex reaction rates.

The system in question [42] has for the dynamics at
neighbouring bulk sites on a one-dimensional lattice the pro-
cesses

◦• q→ •◦ •◦ q−1

→ ◦•
•• q→ •◦ •• q−1

→ ◦•
◦• κq→ •• •◦ κq−1

→ ••
occurring at the rates indicated, and with• representing a
particle and◦ an empty lattice site. It was demonstrated [42]
that the matrix product scheme used for the ASEP could
be generalised to cater for the steady state of the present
reaction-diffusion system on a lattice ofN sites with reflect-
ing boundary conditions (i.e. which is neither periodic nor
has particle input or removal at the boundaries).

In the matrix product approach, the normalisationZN is
given by a scalar derived fromCN whereC is a square ma-
trix. If C is a finite dimensionalm ×m matrix and can be
diagonalised, the resulting expression forZN has the form

ZN (q, κ) =
m∑

n=1

anλN
n (28)

in which λn is thenth eigenvalue ofC and the coefficients
an arise from the details of the way in which one obtains
a scalar from the matrixCN . A normalisation of this form
leads to a complex free energy

h(q, κ) = ln
[
max

n
{λn}

]
(29)

in which the maximum means the eigenvalue with the
largestabsolutevalue. Then, there is the possibility of
a phase boundary when the magnitude of the two largest
eigenvalues ofC are equal. It turns out that for the closed
reaction-diffusion system introduced above,C is a4×4 ma-
trix that can be diagonalised whenq2 6= 1 + κ [42]. When
q2 = 1 + κ, C cannot be diagonalised on account of the
largest eigenvalue being degenerate, and a phase transition is
found to occur at this point. Note that this scenario contrasts
with the transfer-matrix approach to one-dimensional equi-
librium systems where the partition function is also written
as a product of matrices. Since all elements of the transfer
matrix are positive the largest eigenvalue cannot become de-
generate and therefore there can be no phase transition [12].
However there is no such restriction on the elements ofC,
and so eigenvalue crossing is permitted and nonequilibrium
one-dimensional phase transitions can occur.

The structure of the normalisationZN (q, κ) is even sim-
pler in the case where particles are inserted onto and re-
moved from the left boundary at ratesα andβ respectively
(with the right boundary remaining reflecting), and these
rates satisfy the relationα = κ(q−1 − q + β) [43]. In this
caseC is a2×2 matrix and, forq2 6= 1+κ, is diagonalisable
with eigenvalues

λ1 = 1 + κ and λ2 = q2 . (30)

We see then immediately from (29) and an application of
the rule (10) that there is a phase boundary in the complexq
plane along the circle|q| =

√
1 + κ. Also, since one of the

eigenvalues does not depend onq, the free energyh(q, κ)
is a constant in one of the phases which, as the analysis of
the normalisation zeros for the ASEP demonstrated, implies
that the density of zeros on this circle is constant in the ther-
modynamic limit. In turn, this implies that the phase transi-
tion is first order, as confirmed by explicitly calculating the
density profile in the two phases [43].

We finally turn our attention to a process that comprises
symmetric decoagulation (that is,•◦ → •• and◦• → ••
taking place with equal probability in each direction) and
spontaneous decay (• → ◦) occurring at independent rates.
Introduced as a crude model of an epidemic [44], thiscon-
tact processis known to exhibit a transition from a phase in
which the absorbing state (empty lattice) is reached with cer-
tainty to a phase in which there is some probability that the
epidemic remains active forever in the thermodynamic (in-
finite system size) limit [45]. This transition occurs as the
ratio between the decoagulation and decay rates is increased
beyond a critical value.

n=0

n=3

n=4

n=5

n=6

n=1

n=2

A B
Figure 6. Directed percolation. Bonds are open (solid lines) with
probabilityp and closed (broken lines) with probability1 − p. A
fluid starts at layern = 0 and may flow only downwards through
open bonds. Bonds carrying the fluid are shown with thick lines, so
that the pointA on layern = 6 is connected to the origin whereas
pointB is not.

Although not proven, it is widely accepted on the basis
of simulation and approximate methods (such as series ex-
pansions) that the transition just described is continuous and
characterised bydirected percolation(DP) exponents (see
[13] for an in-depth discussion of these issues). Directed
percolation itself [46] is a geometric construction designed
to model fluid flow through a random porous medium under
the influence of gravity. Consider the rhombic lattice shown
in Fig. 6 and imagine ‘pouring’ fluid in from the uppermost
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site. The fluid is allowed to flow along a bond pointing diag-
onally downwards and then only if it is open. Each bond has
a probabilityp of being open (and hence a probability1− p
of being blocked), and the state of each bond is independent
of any other and may not change with time.

The main quantity of interest in this system is the per-
colation probabilityPn(p) that the fluid can penetrate to
a depthn in the medium (see Fig. 6), averaged over all
possible bond configurations. The order parameter for the
model is the probabilityP∞(p) that the fluid can penetrate
infinitely far given a bond probabilityp. If p is below some
critical percolation thresholdpc, the fluid only ever pene-
trates a finite distance—i.e. a layer becomes dry with cer-
tainty. However, for largerp, the order parameter becomes
nonzero, growing asP∞(p) ∼ |p − pc|β with β ≈ 0.276
near the critical point. The importance of the DP transition
is that a wide range of models that have a transition into an
absorbing state are expected to have that transition charac-
terised by the DP exponents, one of which isβ [13]. Despite
a huge amount of interest in directed percolation, none of the

models expected to belong to its universality class has been
solved exactly.

Recently an attempt has been made to shed further light
on the DP transition by studying the zeros of the percolation
probabilityPn(p) [47, 48]. At first glance, a connection be-
tween this probability and a partition function is not obvious.
However, associating with each site a ‘spin’ stateσi, that is
up if sitei is connected to a point on thenth layer and down
otherwise, yields a form forPn(p) that has the structure of a
transfer-matrix representation of a partition function for an
equilibrium system with three-spin interactions [49].

It is not clear that being able to givePn(p) the appear-
ance of a partition function necessarily implies that the Lee-
Yang theory should hold. In particular,Pn(p) has some fea-
tures that set it apart from ‘standard’ equilibrium partition
functions, in that it does not grow exponentially in the num-
ber of bondsN , at least in the range0 ≤ p ≤ 1. It is also
uncertain whether a free energy can meaningfully be defined
for this system, especially in the region0 ≤ p ≤ pc in which
limn→∞ Pn(p) = 0.

pc 10 2 3−1
Re(p)

−0.75

−0.25

0.25

0.75

Im
(p

)

t=15
t=14
t=13
t=12
t=11
t=10
t=9
t=8

critical
point

Figure 7. Zeros of the percolation probability on the directed percolation lattice up to depthsn = 15. Taken from [48] in which the symbol
t is used where we usen.

Given these observations, it is perhaps not surprising that
the zeros ofPn(p) calculated numerically forn ≤ 15 (lead-
ing to polynomials of degree up toN = 240) have a more
complicated distribution than for the (exactly solved) mod-
els considered so far. As is evident from Fig. 7, which was
presented in [48], the zeros do not lie along a single curve
but along a sequence of curves meeting at the critical point
(as well as inside some region that encloses part of the real
axis forp > 2).

By considering the sequences of zeros approaching the
positive real axis, one can estimate the critical pointpc and
the density of zeros as it is reached [48]. The latter yields
a prediction for one of the DP critical exponents and one
finds good agreement with the most precise estimates of
both the transition point and the associated exponent ob-
tained through other means. Hence we have further evidence
for the applicability of Lee and Yang’s ideas concerning par-
tition function zeros to a much wider range of statistical dis-
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tributions than equilibrium steady states.

V Summary and outlook

In this work we have revisited the Lee-Yang description of
equilbrium phase transitions with a view to seeing whether
the ideas apply to more general nonequilibrium transitions.
Recently there have been a number of studies of zeros of
partition-function-like quantities that arise in systems with
nonequilibrium dynamics, and we have seen in our review
of these works that the Lee-Yang theory, as described in sec-
tion II, seems to hold quite generally.

We have argued that for dynamic models with a unique
steady state, the normalisation defined as a sum over the
steady-state configurational weights (22) serves as a suitable
‘partition function’ in the sense that its zeros, in the com-
plex plane of any model parameter, should accumulate to-
wards physical transition points in the thermodynamic limit.
Furthermore, the density of zeros and angle of approach
to the real axis indicate whether the transition is first-order
(manifested physically through phase-coexistence) or con-
tinuous (i.e. characterised by divergent correlation lengths
and times). Thus studying the zeros of the normalisation
(22) provides an unambiguous classification of nonequilib-
rium phase transitions as do the Lee-Yang zeros in the equi-
librium case.

The observation that backs up this scenario is embod-
ied by equation (23) which reveals that the reciprocal of
the steady-state normalisation is equal to the product of the
characteristic relaxation times in the dynamics. Since near a
phase transition one expects timescales to diverge, one also
expects the normalisation to approach zero. However, a rig-
orous argument for this to be the case is still lacking. More-
over (23) implies a possible link between systems for which
the steady state normalisation can be calculated and those
for which eigenvalues of the transition matrix can in princi-
ple be calculated.

A different class of systems encompasses those whose
steady state is not unique. The contact process is, in fact,
an example of such a model, in which the absorbing state
is reached with certainty below the critical decoagulation
rate, whereas above it, and on an infinite system, a second
steady state can also be reached with some nonzero proba-
bility. Since this additional steady state exists only when the
lattice size becomes infinite, one must take that limit first,
before taking time to infinity. Otherwise, on a finite sys-
tem the steady state is simply the absorbing state and the
steady-state normalisation is trivially equal to a constant.
Nevertheless the work of [47, 48], which we reviewed in
section IV.2, indicates that the Lee-Yang theory can be rele-
vant when one considers other properties of the nonequilib-
rium system such as the percolation probability.

Although we have not discussed this in great detail
here, it should be noted that the Lee-Yang approach gives
a method for extrapolating to the thermodynamic limit from
solutions for small system sizes. In the work of [48], nu-

merical solutions for small systems were used successfully
to estimate the transition point and density of zeros as it is
approached. From this information one learns about the na-
ture of the phase transition and, for example, can estimate
the values of critical exponents. This is a common technique
in equilibrium statistical physics (see e.g. [50]) and it may
be the case that stochastic processes unyielding to analytical
treatment could be understood this way.
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[15] G. M. Scḧutz, Exactly Solvable Models for Many-Body Sys-
tems Far From Equilibrium, inPhase Transitions and Crit-
ical Phenomena, edited by C. Domb and J. L. Lebowitz,
Vol. 19, p. 1 (Academic Press, London, 2001).

[16] R. Stinchcombe, Adv. Phys.50, 431 (2001).

[17] M. R. Evans and R. A. Blythe, Physica A313, 110 (2002).

[18] O. Narayan and A. P. Young, Phys. Rev. E64, 021104 (2001).

[19] N. G. van Kampen,Stochastic processes in physics and chem-
istry (North-Holland, Amsterdam, 1992) second edition.



R. A. Blythe and M. R. Evans 475

[20] R. A. Blythe,Nonequilibrium Phase Transitions and Dynam-
ical Scaling Regimes. Ph.D. thesis, University of Edinburgh
(2001). http://www.ph.ed.ac.uk/cmatter/links/rab-thesis.

[21] B. Gaveau and L. S. Schulman, J. Math. Phys.39, 1517
(1998).

[22] P. F. Arndt, Phys. Rev. Lett.84, 814 (2000).

[23] R. A. Blythe and M. R. Evans, Phys. Rev. Lett.89, 080601
(2002).

[24] F. H. Jafarpour, J. Phys. A: Math. Gen.36, 7497 (2003).

[25] B. Cessac and J. L. Meunier, Phys. Rev. E65036131 (2002).

[26] S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B28, 1655
(1983).

[27] S. Katz, J. L. Lebowitz, and H. Spohn, J. Stat. Phys34, 497
(1984).

[28] B. Schmittmann and R. K. P. Zia,Statistical Mechanics of
Driven Diffusive Systems, Vol. 17 of Phase Transitions and
Critical Phenomena(Academic Press, London, 1995).

[29] J. Krug and H. Spohn, Kinetic Roughening of Growing Sur-
faces, inSolids Far From Equilibrium, edited by C. Godr̀eche
(Cambridge University Press, Cambridge, 1992).

[30] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Biopolymers
6, 1 (1968).

[31] B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys.69,
667 (1992).

[32] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys.
A: Math. Gen.26, 1493 (1993).
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