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I. Introduction

A. Rigorous results in the study of phase transitions

Practising scientists often have a low regard for rigorous results. They com-
plain, with some justification, that the interesting physical questions in any
field have long been settled by the time formal proofs are available, and all
that remains is to construct a mathematical framework which serves to make
rigorous, and rather obscure, the arguments whose validity is already
intuitively clear. Such an objection applies in part to the study of phase transi-
tions, though in this discipline one often finds, as well, that certain rigorous
results are rather near the front lines of research. One reason for this is that
a phase transition, almost by definition, occurs at some point of discontinuity
or other non-analytic behaviour in thermodynamic functions. Furthermore,
this behaviour appears, in typical mathematical models, only in the limit of an
infinite system. Thus phase transitions arise in precisely those circumstances
where a careless interchange of limits or the unjustified assumption that a
perturbation series converges is not only sloppy mathematics, but may very
well lead to incorrect physical conclusions.

This is not to deny the important role of approximate theories and
intuitive arguments in the study of phase transitions, as in every other
scientific discipline. The place of rigorous results is not as a substitute but
rather as an aid to intuitive ideas, in providing certain checks and standards
of comparison for approximate arguments. And just as intuitive considera-
tions can motivate a mathematical proof, so also rigorous results occasionally
provide new physical insights and a fresh way of looking at a particular prob-
lem. It is the author’s hope that this article, as well as summarising some of
the more mathematical of the theoretical advances of recent years, may serve
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to convey something of his conviction that theorems and proofs can indeed
make some contribution to our understanding of the subject of phase
transitions.

B. Scope of the present article

The present article presents a large number of exact results in equilibrium
statistical mechanics which appear to have some bearing on problems of
phase transitions and critical points. In general, such results fall into two
categories. There are, first, exactly soluble models, such as the two-dimensional
Ising model in zero magnetic field (Onsager, 1944). These exact solutions are
of immense importance for our understanding of phase transitions, and some
of them are discussed in other articles in this series. The present article is
devoted entirely to a second class of results: those which can be shown to
hold for model systems even in cases where the exact statistical properties
have never been obtained in closed form. A result of this sort is the Lee-Yang
circle theorem (discussed below in Section IV.B) which enables one to make
certain precise statements about an Ising ferromagnet in a magnetic field,
even though for most models of interest the thermodynamic and other
functions can (at present) only be calculated approximately.

Among the results just mentioned, certain subjects have been deliberately
omitted from the present article: the study of the states of an infinite system
using C*-algebras is discussed by Emch in another article in this volume
(Chapter 4). The article by Ginibre in this volume (Chapter 3) concerns
quantum systems at low densities and gives the quantum counterparts of
the results described in Section III. The article by Hemmer and Lebowitz
in this publication ( Vol. 5) discusses systems with a weak, long-range
potential. We have omitted certain results pertaining to ferroelectric models,
as these are treated in the article by Lieb and Wu (Chapter 8).

Within the limits indicated in the two preceding paragraphs, we have
attempted to give a reasonably comprehensive summary of rigorous results
which seem to have some direct bearing on the problem of phase transitions.
Undoubtedly there have been omissions and errors in judgement, and the
author can only hope that these are not too serious. Due to the amount of
time needed to write the article, it has not always been possible to include the
very latest developments. For the most part we have omitted detailed proofs
of the results described in Sections II to IX. Their inclusion would have led to
a much longer article. In addition, detailed proofs of many of these results
will be found in Ruelle’s (1969) book, Statistical Mechanics: Rigorous Results.
No serious student of the subject should be without a copy, and in the text we
refer to it with the special notation RSM. (The reader may interpret this as an
abbreviation for “Ruelle, Statistical Mechanics’ or “Rigorous Statistical
Mechanics”, the two are close to synonymous!)
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In order to prevent this article from becoming a mere compendium of
results with references to the literature, we have included some of the simpler
proofs and occasionally portions of the longer arguments. Where this is done,
and occasionally where the argument is omitted entirely, we have attempted
to provide some of the physical motivations which lie behind the proof. The
choice of which arguments to include and which to omit was (apart from the
requirement of simplicity) to a large degree arbitrary. We do not at all wish to
imply that the amount of space devoted to a particular argument in the text
is a measure of its importance!

Throughout the article relatively greater attention is paid to lattice than to
continuum systems, and this emphasis is deliberate. In the first place, the
mathematical tools needed to establish some rigorous result for lattice systems
are almost always simpler than those required in the continuum case. Thus
the theoretical scientist with an ‘““average’ background in formal mathematics
should find the arguments for lattice systems easier to follow. In addition, at
the present time the rigorous results on both the presence and absence of
phase transitions are much stronger in the case of lattice systems than in the
case of continuum systems.

Finally, some comments on notation. We have at certain points in the text
summarised a set of results in the form of a “theorem’. Thisterm is used
sparingly, and a large number of results which are fully as “rigorous’ as the
“theorems’ are simply stated in the text, in cases where we considered a
formal summary unnecessary. Theorems are numbered consecutively in
different sections. Thus Theorem 4.2 is the second theorem in Section IV.
On the other hand, equations are numbered consecutively in the different
subdivisions labelled with capital letters. Thus eqn (2C.13) is the 13th
equation in II.C.

II. The Thermodynamic Limit

A. Introduction

1. Justification for the thermodynamic limit

By ‘“‘thermodynamic limit”’ (or “infinite volume limit’’) we mean, in general,
a consideration of the asymptotic statistical properties of a model system in
which the linear dimensions are allowed to become infinite. Since laboratory
investigations of phase transitions invariably involve finite amounts of
material, it may at first seem surprising that the thermodynamic limit plays a
central role in current theories. There are, however, compelling mathematical
and physical reasons why this is the case, and we shall mention some of them
briefly.

Consider, for example, a one-component fluid confined to a finite region
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Q2 of volume V,,. The pressure p is given by the grand-canonical formula
(Huang, 1963)

-]

p=(BVy) llog [1 + ) efrN ZQ(N)] (2A.1)
N=1

with Z,(N) > 0 the canonical partition function for N particles at a
temperature T = (kB)~!. In the interior of the range of values (real) of the
chemical potential x for which the sum converges, it is easily shown that p is
an analytic function of u. In particular, it cannot have a discontinuous first
derivative, which is the thermodynamic characteristic of a first-order phase
transition. However, by taking a suitable limit ¥V, — oo in (2A.1), one has at
least the possibility (Yang and Lee, 1952) that p will have a discontinuous
derivative. Thus a mathematically “‘sharp’ transition can only occur in this
limit. It is also true in general that only in the thermodynamic limit do the
different ensembles (microcanonical, canonical, grand canonical) yield
equivalent thermodynamic functions. Hence this limit permits a mathematic-
ally precise discussion of the question of phase transitions.

The physical justification for the thermodynamic limit comes from con-
sidering how experiments are actually carried out in the laboratory. In
measuring the equation of state of a fluid, the experimenter assumes the
pressure does not depend on the detailed shape of the container or the precise
quantity of fluid present, but only on the average density (and the tempera-
ture). This assumption can be, and sometimesis, subjected to experimental test.
As long as it is valid, the theoretical quantity to compare with the data is
evidently a pressure which is similarly independent of the precise size or
shape of the model system considered. A mathematically convenient way of
obtaining this “bulk’ pressure is to take the thermodynamic limit, in which
surface effects became negligible compared to bulk properties. Indeed, the
existence of this limit is one indication that one has a reasonable physical
model.

Of course, statistical calculations for finite systems are of interest, both
because they show how rapidly the “bulk” limit is achieved and because of
their relevance to studies of surfaces and small particles. But when thermo-
dynamic or other properties are supposed to be characteristic of matter in
bulk, there is good reason for attempting to understand them in terms of the
thermodynamic limit.

In the thermodynamic limit one expects the free energies of a model system
to be “extensive,” that is, proportional to the volume or number of particles,
nssuming suitable variables (say temperature and density) remain fixed.
Consider, for example, the internal energy of a macroscopic quantity of fluid.
If for conceptual purposes we imagine the fluid split up into a number of
smaller regions of identical shape (and still macroscopic in size), the total
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energy is a sum of energies of each of the smaller regions and thus pro-
portional to their number, i.e., extensive, apart from a correction term
representing the interaction between elements of fluid in different regions.
The correction term should be relatively small if the range of intermolecular
forces is short compared to the linear dimensions of one of the smaller regions.
This intuitive idea is, as we shall show, at the heart of most proofs that a
thermodynamic limit exists.

2. Bibliographic note

The problem of proving the existence of a thermodynamic limit for the
thermodynamic properties of a system of interacting particles seems first to
have been discussed by Van Hove (1949) in the case of a continuum classical
gas with hard cores in the canonical ensemble (the proof is incomplete due to
an error in the appendix of the paper). Later Yang and Lee (1952) considered
the same system in the grand ensemble and Witten (1954) extended their
proof with a relaxation of the condition of hard-cores. Ruelle (1963a) proved
the existence of limits in both the canonical ‘and grand canonical case under a
“strong-tempering’” condition on the potential, and in a companion paper
(Ruelle, 1963b) extended the results to quantum gases. Dobrushin (1964) and
Fisher (1964a) showed how Ruelle’s arguments could be extended to a more
general class of potentials, and Fisher considered in some detail the possible
class of domains tending to infinity for which a limit exists.

The thermodynamic limit for lattice systems was discussed by Griffiths
(1964a) for both classical and quantum systems. Additional results have been
obtained by Gallavotti and Miracle-Sole (1967) for classical and Robinson
(1967) for quantum lattice systems.

The microcanonical ensemble and its relation to the other ensembles has
been discussed by Van der Linden (1966, 1967) and Galgani et al. (1969a,b)
in the case of classical systems. Further work on the relation of the different
ensembles appears in papers by Lewis (1957), Van der Linden (1968), Van der
Linden and Mazur (1967), and Mazur (1967). The microcanonical ensemble
in quantum systems was discussed by Griffiths (1965b) and Minlos and
Povzner (1967).

The above material has been conveniently collected (and in several cases
the results extended) in the book by Ruelle (1969). See also Miinster (1969),
Chapter IV, and Lebowitz (1968). Subsequent work includes consideration
of more general boundary conditions (Robinson, 1970; Fisher and Lebowitz,
1970) and a discussion of “superstable interactions’ (Ruelle, 1970).

B. Classical lattice systems
1. Ising model. magnet and lattice gas
We shall describe the Ising model in two ways: as a model of a magnetic spin
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system and as a model of a fluid. In language appropriate to the former,
imagine a regular lattice (e.g., simple cubic) with sites numbered in some
fashion, and at the ith site, with spatial positionr;, a “spin’’ variable ¢; which
takes one of two values: +1 or —1. One may think of these two values as the
possible z components of angular momentum for a particle of spin #/2 located
at the ith site. If Q is a finite set of V,, sites, a configuration of Q is specified
by giving the values of all the ¢; on these sites. Suppose the sites in Q2 are
numbered 1, 2, ... V. Then the canonical partition function Z, is given by

Za=13) Y .. 2 exp(—P#g) = exp (— BV fo) (2B.1)
g1 a2 oV
where #, is the Hamiltonian, some real function of the configurations,
p > 0 the inverse temperature, and f, is the free energy per lattice site.
A fairly simple (and non-trivial) Hamiltonian is given by the sum of pair
and single-particle interactions:

H = - Jjo,06;— ) Hjo, (2B.2)
i<j i

where H; is the ‘“‘magnetic field”” at the ith site (letting the ‘“magnetic
moment,” a constant multiplying H; which is often included in the
Hamiltonian, be one), and J;; = J; (sometimes called “‘exchange constants”’).
It is often convenient to regard (2B.2) as referring (formally) to an infinite
lattice, with s, obtained by including in the sums only the terms for which
both i and j are in Q.

In language appropriate to a fluid or “lattice gas,”” imagine that space has
been split up into cells of unit volume centered on sites of a regular lattice.
Let n; = 0 or 1 depending on whether the ith cell is empty or occupied by a
gas particle; at most one gas particle is permitted in each cell. Configurations
for a finite set Q of V,, cells are specified by giving the n; for each i in 2, and
the potential energy U depends only on the »;. The classical grand partition
function £ and the pressure p are given by

2= Z Z ;exp (—.39?9) = exp (BVapo) (2B.3)

ny n2

89}

where we assume the cells in Q are numbered 1, 2, ... V, and
#=U-pymn (2B.4)
with 7 the chemical potentialf in the ith cell.

T 'This differs from the usual definition of chemical potential (see, for example, Ch. 8 of
Huang, 1963,) by an additive term dependent on the temperature, which for our purposes
can be ignored.
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In the case of pair interactions we write

i<j

where @ is the pair potential. For finite Q, #,, is obtained by including in the
sums (2B.4) and (2B.5) only the terms for which both i and j are in Q.

The lattice gas and the spin system are related through the obvious
identification

o, =1—2n, (2B.6)

(or 2n; — 1 if preferred), which is to say that ¢; = +1 corresponds to an
empty cell and o; = —1 to a cell with a particle present. From this it is
apparent that the lattice gas and the spin system are essentially identical.
However, it is sometimes more convenient to state a result in one language
rather than the other, and in this article we shall use b\oth on different
occasions. One slightly troublesome feature is that a translationally-invariant
interaction (J;; depending only onr; — r;, H; a constant) in magnetic language
when applied to a finite system leads, in lattice gas language, to a chemical
potential which depends on the cell (due to the different ““natural’’ choice of
boundary conditions in the two cases). Likewise a constant chemical potential
in a finite system means that H; will not be constant. In most cases this
problem can be ignored in the thermodynamic limit.

2. Thermodynamic limit for nearest-neighbour interaction

We wish to show that f,, defined in (2B.1) tends to a well-defined limit for
some sequence of systems 2 of increasing size. Some restrictions must, of
course, be placed on s# and the sequence of systems. In order to illustrate the
essential ideas entering a proof, we here consider a fairly simple example of
spins on a two-dimensional square lattice with H; = H and J;; = 0 unless the
sites i and j are nearest neighbours of each other, in which case J;; = J.

In the proof we shall need a certain inequality. Let s, and s, be two
Hamiltonians defined for the same (finite) set Q of lattice sites, with f; and f,
the corresponding free energies. Let

W,=%2—%1 (2B.7)

and define |5#’|| to be the maximum value of |#’| over all configurations
of Q. The inequality

|f1 = fal < 166711/ Vq (2B.8)
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is obtained as follows. For every configuration we have

exp (— Bl #”|]) exp (— Bot'5) < exp (—BHy)

<
< exp (B #)|) exp (—BH#,), (2B.9)

which summed over every configuration yields

exp (— Bl #”|) exp (= BVaf2) < exp (—BVo f1)
< exp (Bl #7]) exp (—BVa f2) (2B.10)

which with f > 0 is equivalent to (2B.8).

We are now ready to investigate systems Q of increasing size. Let Q; be the
I? sites within a square region L sites on an edge, and let s (L), Z(L), f(L)
denote the Hamiltonian, partition function, and free energy for such a square.
We consider first the case L = 2", n an integer. A square with edge 2" may be
thought of as composed of 4 squares of edge 2"~ ! (Fig. 1 shows the case
n = 3) and the Hamiltonian may be written as

”(zn) — ”(1) (2n—1) + %(2) (2n—1) + e;(f(3) (2n—1)
+ AR H = Hy + K (2B.11)
where the #Y (2"~ 1) are the Hamiltonians for the four smaller squares and

' contains all the terms —Jo, o, where the neighbouring sites k and /
belong to different small squares (shown by dotted lines in Fig. 1).

-/ o/ T \/ ./

l'a. 1. Square 8 =23 sites on an edge. The solid lines represent the terms in 2#, and the
Jdotted lines the terms in ¢’ in Eq. (2B.11).
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Now with 5#’ absent, the Hamiltonian 5, describes four identical squares
which do not interact with each other. Thus the corresponding partition
function and free energy are given by

Zy = [Z(Z”—l)]4; fo=f2"1 (2B.12)
and the inequality (2B.8) implies that
1f2") = fol = 172" —FQ@*~HI < |o27]1/2%" (2B.13)

Note that #’ (see Fig. 1) is the sum of 2**! terms each of which does not
exceed |J| in absolute value. Thus we have

o) = 2"*1|J| (2B.14)
and
| fQ") — fQ*Hl <2127 (2B.15)

By repeated application of (2B.15) one finds that for any positive integer m,

Q™™ — f@H < VI i 27 = |J2t " (2B.16)

k=n

which shows that f(2") is a Cauchy sequence in n and possesses a well-defined
limit f, the free energy per lattice site in the thermodynamic limit, as n — oo,
and furthermore

|f—f@H < |2t (2B.17)

The limit f obtained for a particular sequence of squares is also obtained for
an arbitrary sequence of squares with edge increasing to infinity. To see this,
let L be some positive integer and consider a square of edge M = 2"L, with
n > 0 any integer. This square may be thought to consist of 22" smaller squares
of edge L interacting with each other by a term s’ with maximum absolute
value bounded by

o’ < 2|J|L 23" (2B.18)
The analog of (2B.13) is

|f(M) — f(D)] < 2WJ1/L. (2B.19)

On the other hand, the square of edge M may be thought of as made up of
I? smaller squares of edge 2", and one obtains

lf(M) = f2")] < 21J127" (2B.20)
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Letting n and hence M increase without limit while L is fixed, one obtains,
combining (2B.17), (2B.19), and (2B.20),

f—fOl <L (2B21)

which is the desired result. (For a much more efficient argument see RSM,
pp. 18ff.)

Note that the above proof of existence of a thermodynamic limit follows
very closely the intuitive notion presented in A above. That is, (2B.14) is an
estimate of the interaction between the smaller squares proportional to their
perimeters, while (2B.8) shows that the effect of such an interaction upon the
free energy per site is proportional to ‘“‘surface’ (perimeter) divided by
“volume’ (area) of the square.

One may obtain periodic boundary conditions by adding to s a term
—Jo; o; for each pair i and j in which 7 is a site on the edge of the square and
j a site on the same row (or column as the case may be) on the opposite edge
of the square. The new Hamiltonian for a square of edge L differs from the
original by a term 5#’ with || 5’| equal to 4JL and the new free energy per
site differs from the old by at most 4J/L. Hence as L — oo the same free
energy is obtained in both cases.

3. General interactions

By methods similar to those used above for the case of nearest-neighbour
interactions, it is possible to establish a thermodynamic limit for more
general interactions, including pair interactions of (not too) long range and
many-body interactions, and a large class of sequences of systems of in-
creasing size, in any number of dimensions. The following notation will
facilitate discussion of a fairly general (not the most general) class of inter-
actions for which a limit can be shown to exist. For 4 a finite set of lattice
sites, let

icd ied
and let
H =Y Jo H=)dm, (2B.23)
A A

for spin system and lattice gas, respectively, where J, and &, are real
constants. For a finite system Q, the appropriate s#,(5#,) is obtained by
summing, in (2B.23), over 4 which are subsets of Q. Note that (2B.2) and
(2B.4) are special cases of (2B.23) in which J,(®,) vanishes whenever A
contains more than two sites.

The interactions (2B.23) are translationally invariant if J,(®,) depends
only on the relative locations of the sites in A and not their absolute location
in the lattice. In other words, J, = J, if A’ is obtained from A by a trans-
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lation (rigid, without rotation) of the lattice. As well as requiring trans-
lational invariance, we must put some restriction on the long-range part of the
potential. Choose a particular lattice site i and require that
YV, < o (2B.24)
A
(or, in the case of a lattice gas, the same inequality with J replaced by @)
where the sum is over all finite sets of sites from the infinite lattice which
contain the site i, and V, is the number of sites in A. In particular, for pair
interactions, one requires that for fixed i,

2 Wil < oo, (2B.25)
J
or, roughly speaking, that |J;;| decreases a little more rapidly than [r; — 1| ~d
in a d-dimensional lattice.

THEOREM 2.1(a). If the conditions on the interactions stated in the previous
paragraph are satisfied, the limits

~.

f=lim fo; p= lim p, (2B.26)
- Q- w
exist for Ising model spin systems and lattice gases, respectively, for a sequence
of finite sets of lattice sites Q tending to infinity in the sense of Van Hove, and
fo and p, computed from (2B.1) and (2B.3), respectively.

For the proof of this theorem, see RSM, p. 22, where it is carried out for
the lattice gas; also Gallavotti and Miracle-Sole (1967) under somewhat more
restrictive conditions. The condition that Q tends to infinity in the sense of
Van Hove means (RSM, p. 14) that V,, tends to infinity and at the same time
Vial Vo tends to zero for any fixed s, where V), is the number of sites in Q
which are within distance & of some site outside Q.

The theorem applies with “boundary conditions’” obtained for finite Q by
restricting the sums in (2B.23) to subsets of Q. It is possible to demonstrate
that the same limit is achieved with certain other types of boundary con-
ditions, in particular periodic boundary conditions in the situation where the
interactions have finite range, which means that the sum in (2B.25) has but a
finite number of non-zero terms (see RSM, p. 20).

4. Convexity properties of the thermodynamic limit

The limiting free energy f obtained in (2B.26) is a function of the J, and the
parameter . With f held fixed, fis a concavet} function of the interactions in

1 A function g(x) is convex if for any A in the range 0< A< 1, glAx; +(1 —AD)xz]<Ag(xy) +
(1—2) g(x2). A function h is concave if —h is convex. Thus x? is a convex function and
log x for x> 0 is concave. A standard reference on convex functions is Hardy et al. (1952),
Ch. ITI.
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the following sense. Let J,, J,” be two choices of interactions, both of which
are translationally invariant and satisfy (2B.24). With A a fixed number
between 0 and 1, we define a third set of interactions by

J) =0+ 0 -=-NJ) (2B.27)
for every A. Then the free energies f, f', f'’ associated with J, J’, J'’ satisfy
=2+ A =4f. | (2B.28)

Stated another way, if the interaction depends linearly on some parameter A,
fis a concave function of the parameter for fixed f. (Thus for the model
considered in Section 2 above, f is a concave function of J and H.) If f is
allowed to vary, f is a concave function of T= (kf)~! and A together
(Griffiths, 1964a).

The above comments apply equally well to the pressure of a lattice gas,
with ““concave’ replaced everywhere by “convex’ and the inequality (2B.28)
reversed (the difference arises because f is defined with a minus sign in
(2B.1) and p with a plus sign in (2B.3)). In particular, p is a convex function
of uand T.

Concavity (convexity) is easily established by showing directly that
fo(pgo) has the property for finite Q (RSM, p. 17); the limiting function then
automatically inherits this property. It guarantees that f(p) is continuous as a
function of the interaction parameters and possesses monotone first partial
derivatives.

C. Quantum lattice systems

1. Heisenberg model and quantum lattice gas

We shall consider a quantum spin system in which there is at the ith site of a
regular lattice a particle of spin /2 with which are associated the usual spin
operators or Pauli matrices o,;, 6,;, 6,;. These satisfy

Oyi o-yi = io-zi (2C.1)

and the analogous equations obtained by cyclic permutation of x, y, and z.
Spin operators associated with different lattice sites commute: for i # j,

[o-xis o-yij(jay)] = O, (2C2)

ctc. For a system consisting of the sites i =1, 2, ... V, it is convenient to think
of the operator o,; as defined in a vector space of dimension 27, the tensor
product of ¥V two-dimensional spaces, by

6,=10..91Q0,01® ..Q1 (2C.3)
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that is, the tensor product of unit matrices except in the jth position where 1
has been replaced by o,.
The canonical partition function Z, for a set Q of V,, lattice sites is given by

Zg = Tr [exp (= p# g)] = exp (—BVafo) 2C4)

where #  is the Hamiltonian, a Hermitian matrix in the appropriate tensor
product space, Tr stands for trace, and f'is the free energy per lattice site.
As an example, consider the Heisenberg-Ising Hamiltonian:

H = — ;j Jij [o-zi 0.j + OC(O'm- Oxj + Oy o'yj)] - ZHi /R (2C5)
i i

For o =1 this is the Heisenberg Hamiltonian and for o = 0 it reduces to the
Ising Hamiltonian (2B.2) upon identifying a,; with ¢;. Of course for finite Q,
H g is obtained by including in the sum (2C.5) only terms with both i and j
in Q. -

The quantum spin system just described can be regarded as a lattice model
of a gas of identical bosons (Matsubara and Matsuda, 1956) in much the
same way as the Ising spin system can be viewed as a gas of classical particles.
We identify

n=%1 -0y (2C.6)

as the number (operator) of particles in the ith cell; no cell can contain more
than one particle (“hard core’ condition). The operator

Oxi Oxj + Oy 0y C.7)

plays a role analogous to the kinetic energy of the continuum gas (on a lattice
one replaces the Laplacian by a finite difference operator), while terms like

6,0, (2C.8)
J

provide (as in the classical case) a potential energy. The grand partition func-
tion E, for a set Q of Vj, sites is

Eq = Trexp (—p#q + BuANg)] = exp (BVapo) (2C.9)
where
N = Zn, (2C.10)
7

is the total number of particles and ji is the chemical potential.

t See footnote on p. 13.
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2. Thermodynamic limit for nearest neighbour interaction

The additional considerations beyond those in the classical case needed to
establish a thermodynamic limit for the free energy in the quantum case can
be illustrated by carrying out the argument corresponding to Section B.2
above when (2B.2) is replaced by (2C.5). In the latter we shall set « =1 and
let J;; = J for nearest neighbour sites on a square lattice, J;; = 0 otherwise,
and H; = H.

Essentially the only dlﬂiculty is to find the quantum analog of (2B.8). It
turns out that this inequality remains valid in the quantum case if ||o#']] is
interpreted as the usual operator norm (see Halmos, 1958), which for a
Hermitian matrix is simply the largest of the absolute values of its eigenvalues.

The proof is as follows (RSM, p. 17). Let C and D be two nxn Hermitian
matrices, then

log Tr [e€*P] — log Tr [e€]

1
f dl_dd_l_'log’l"r [eC+lD:| =f <D>l d). (2C.11)
0

where
(D); = Tr[De®**P]/Tr [e€+*P]. (2C.12)

Now (D), lies between the maximum and minimum (most negative) eigen-
values of D (evaluate the traces using the eigenfunctions of D), and hence

llog Tr [e€*P] — log Tr [e€]| < ||D]. (2C.13)

We obtain (2B.8) by letting C = —fs#;, D = —Bs#’, and noting that
| —B#"|| equals B[|#|.

Note that (2B.12) holds also in the quantum case since in 5, there is no

interaction between the four smaller squares. It is necessary to replace
(2B.14) with another estimate. We have £’ the sum of 2"*! terms of the form

—Jo;" o; (2C.14)
and hence

lo£']| < 2% J] lloy- o]l < 3-2"*1|J] [lo;0,5] < 31727+ (2C.15)
using well-known properties of the norm, in particular
l4+ Bl < Al + [Bll; 4B <[4l -|BI (2C.16)

and the fact that the eigenvalues of o,; are +1. The remainder of the proof
goes through just as in B.2, with |J| replaced by 3|J].
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3. General interactions
Let A, B, and C be disjoint subsets of a finite set of V' lattice sites and define

O4Bc = (H O'xj) (l—[dyj) (l—[ sz). 2C.17)
Jjed jeB jeC

We include the cases where one or more of the sets is empty, and define

o48c = 1 when all three are empty. Any Hermitian matrix on the correspond

ing 2”-dimensional vector space can be written in the form

H = "; ; ;JABC O 4BC (2C.18)

where the J , 5. are real constants, and terms in the sum are set equal to zero
if A, B, and C are not disjoint.

We shall assume the J’s are translationally invariant in the sense that if a
single translation of the lattice simultaneously carries 4 into 4’, Binto B’, and
C into C’, then )

Jape = Jypc. (2C.19)

As an example, consider the Heisenberg model with nearest-neighbour
interactions for which J,z- = 0 unless two of the sets 4, B, and C are empty
and the third contains two nearest-neighbour sites (in which case it is J),
or A and B are both empty and C has a single site (in which case it is H).
Another example is the classical Ising model considered in Section B. Upon
identifying o,; with o;, it is evident that (2B.23) is obtained from (2C.18) by
letting J ,5c vanish unless both A and B are empty. Indeed, Theorem 2.1(a)
is only a corollary of:

THeOREM 2.1(b). Let f,, for a finite system be defined by (2C.4). Then for a
sequence Q tending to infinity in the sense of Van Hove, the limit

f= lim f, (2C.20

2- o

exists if the J pc are translationally invariant and
§ %: ;' | Lascl/VauBoc < © (2C.21)

where the summation is over all finite sets of sites from the (infinite) lattice such
that A L B L C contains a particular site i.

For the proof, see RSM, p. 19. (As Ruelle’s notation is different, it is
helpful to note that

lo4pcll =1 (2C.22)
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and thus the condition (2C.21) implies that (2.8) on p. 16 of RSM is satisfied.
The latter may be somewhat weaker restriction than the former.) See also
Robinson (1967) and Griffiths (1964a). |

4. Convexity properties

The remarks in Section B.4 on the concavity of f apply also in the quantum
case with J, replaced by J .. That is, fis a concave function of a linear
parameter appearing in the Hamiltonian, and the pressure for the correspond-
ing lattice gas is convex. These properties must first be established for finite
systems, and the proofs are slightly more complicated for the quantum than
for the classical case. Convexity is closely related to certain inequalities of
Peierls and Bogoliubov (RSM, p. 27; Griffiths, 1964a; Falk, 1970).

D. Other lattice systems

1. Lattice models with general spin

The Heisenberg-Ising model of spin s > 1/2 is obtained by replacing the
¢ operators in (2C.5) by angular momentum operators s which satisfy the
usual commutation rules, e.g.

[sxja Syj] = 18,5 (2D.1)

while s; and s, commute for j # k, and s*> = s(s + 1). For the spin s Ising
model, only interactions involving products of the s,; are permitted in the
Hamiltonian. In lattice-gas language, the 2s 4+ 1 possible values of s;
correspond either to the possibility of having 0, 1, 2, ...2s particles in a cell,
or, alternatively, in each cell one particle drawn from 2s + 1 species of
particles( one species may correspond to ‘““vacuum”).

The proof of existence of a thermodynamic limit for nearest-neighbour
interactions may be carried out in analogy with the s = 1/2 case in Section
B.2 or Section C.2 with appropriate changes in the estimates for | 5#’||. In the
case of general interactions not limited to nearest-neighbours, one requires
(ranslational invariance and a condition analogous to (2B.24) or (2C.21).
For s > 1/2 one can include in the Hamiltonian more than one spin operator
on a given site: e.g., a term s,;” (S, S + 5z S5,) i equivalent to s, for
s = 1/2 but not for s > 1/2. The thermodynamic limit is discussed in RSM,
p. 19 and, using somewhat stronger conditions on the interactions, in
Robinson (1967) and Griffiths (1964a).

2. Continuous variables on lattice sites

The “infinite spin’ or “classical’”’ limit of the quantum lattice system just
described (Section 1) comes about upon replacing s by a vector t of unit
length: that is, for each lattice site j, ¢}, t,;, t,; are real numbers satisfying

s+ 4+ =1 (2D.2)
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With the surface element of the unit sphere denoted by dw, the partition
function for a set Q of sites 1, 2, ... V is

Z,= fd% ...dopexp (=) = exp (—BVfa) (2D.3)

where 57 is some real function of t, t,, ... t,.. The proof of the existence of the
the thermodynamic limit in simple cases can be carried out using the
procedures of Section B above, that is, by purring bounds on the magnitude
of the interaction energy when several smaller systems are coupled together
to form a larger system. Other similar systems may be considered: e.g., t
may be a unit vector on a circle rather than a sphere.} Recently Millard and
Leff (1971) have shown that the partition function for a Hamiltonian some-
what more general than (2C.5), with o; replaced by s;/s, tends for fixedP
to the corresponding ‘““finite spin” partition function (2D.3) as s — oo,
apart from a numerical factor.

Another model in which continuous variables are associated with lattice
sites is the spherical model.f For this model the procedures described in
Section B cannot be used to show the existence -of a thermodynamic limit.
Fortunately, the partition function can usually be evaluated in a form from
which the existence of a limit follows by inspection.

3. Systems with reduced translational symmetry

It is not difficult to extend the proofs of Sections B and C to certain situations
where the interactions J, (J,5c) do not possess translational symmetry. For
example, the interactions may be invariant under only a subgroup of the
translation group of the lattice. Provided the subgroup generates a sublattice
with the same dimensionality as the original lattice, one can establish the
existence of a thermodynamic limit (with suitable restrictions on the long-
range interactions, of course).

4. Lattice gases with extended hard cores

The lattice gases discussed in Sections B and C have ‘““hard cores” in the sense
that at most one atom may occupy each cell. An “extended hard core’ is an
additional constraint that certain other cells, typically the nearest-neighbours,
cannot be occupied if there is a particle in a given cell. It may be thought of as
an infinite positive potential energy preventing two particles from violating
the constraint. This infinite interaction prevents the direct application of the
methods of Sections B, C, but in typical cases, say nearest-neighbour exclusion
and finite interactions with particles in more distant cells decreasing in

T See article by H. E. Stanley in this publication (Vol. 3, Chapter 7).
1 Sce article by G. S. Joyce in this publication (Vol. 2, Chapter 10).
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magnitude sufficiently rapidly with distance, the procedures discussed in
Section E below for continuum gases with hard cores can be used ito
demonstrate the existence of a thermodynamic limit.

5. Lattices with long-range constraints (“‘ferroelectrics’)

There are certain lattice problems, for instance the “ferroelectric’’ models,
where the problem of a thermodynamic limit cannot be attacked by the
methods of this chapter, due to the fact that an alteration of the state of the
system at one point on the lattice may require alterations at points indefinitely
far away because of certain rigid constraints (the ‘““ice condition” in ferro-
electric models). Not unexpectedly, such problems show a certain sensitivity
to the boundary conditions, and the thermodynamic limit requires a special
discussion.}

E. Continuum systems

1. Classical continuum systems

Consider a classical system of N particles confined to a d-dimensional region
Q (usually d = 3) of volume V, interacting through a potential energy
U(ry,r,, ... ry). The canonical configurational partition function is

0a(N) = (N1 f dr, ... dry exp (= BU) = 2™ exp (= BV falN)

A = (2nph2/m)\/?

(2E.1)

where f;, is the Helmholtz free energy per unit volume. The problem of the
thermodynamic limit in the canonical ensemble is to show that for a sequence
of regions 2 with volume tending to infinity in a suitable way, f,, tends to a
well-defined limit provided N also increases in such a way that N/V,, goes to a
finite limit p. )
Alternatively, one can consider the grand ensemble with partition function

Za=1+ 3 2 Qal) = exp (Va0 (2E.2)

where z > 0 is the activity and p,, the pressure. (Following the usual con-
vention, we suppose that U(r,) = 0 and thus Q,(1) = V,,.) The problem is
then to show that p,, tends to a well-defined limit as Q tends to infinity.

In either case, the problem of the thermodynamic limit for a continuum
system is intrinsically more complex than for the lattice problem, and it is in
peneral not possible to obtain a direct estimate of the “‘surface” free energy

| See the article by Lieb and Wu in this volume (Chapter 8).
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corresponding to the interaction between two parts of the system in the
manner discussed in Section B above. Instead it is customary, following the

procedures introduced by Ruelle (1963a), to attack the problem indirectly,
as follows:

(i) One obtains a lower bound for the potential energy (assumed to be
translationally invariant) of the form

U(xy,...ty) > —BN (2E.3)

where B is a constant independent of N. In many circumstances a violation
of this stability condition gives rise to non-thermodynamic behaviour, e.g. the
series (2E.2) diverges (RSM, p. 34). The stability condition places an upper
bound on Q,:

Qa(N) < (Vo e®®)YIN! (2E.4)
and hence a lower bound on f,:
Bfo = —[1 + BB + log (Vo/N)] + (N/Vy) d-log A. (2E.5)
There is a corresponding upper bound on =, and on py:
Bpq < ze™®. \ (2E.6)

(ii) One shows that if several separate systems with free energies f;, 5, ... fx
are placed in contact with each other and the partitions between them
removed, the resulting system has a free energy f, (per unit volume)
satisfying:

f(SAMfi+t 2+ .+ 4fi+e (2E.7)

where /; is the volume of the jth system divided by the total volume, and ¢ is
typically of the order of the ratio of “‘surface” to “volume”. Note that this
inequality only goes in one direction, in contrast with (2B.13) where both
upper and lower bounds are available.

(iii)) The estimate (2E.7) is used to show that for a special sequence of
cubes Q, of volume ¥, tending to infinity and N,/V; — p, the corresponding
free energies satisfy

Jer1t S S+ e (2E.8)
with

kZ1 lex] < o0 (2E.9)
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Consequently the sequence
fi + O e, (2E.10)
n=k

is monotone decreasing in k, can be bounded from below with the aid of
(2E.5), and hence tends to a limit £, which is also the limit of the f;, as k — oco.
Alternatively, an analogous argument (with inequalities reversed) may be
applied to the sequence of pressures to show that p, tends to a limit.

(iv) To show that a more general sequence of regions, not necessarily
cubes, yields the same limit, one employs two estimates. First the interior of a
large region R is ““filled’’ as full as possible, using as many large cubes as
possible, with cubes from the standard sequence, and (2E.7) is used to provide
an upper bound on f; in terms of the f;,. Next R is placed inside one of the
standard cubes and the region exterior to R but interior to this cube is
“filled” with standard cubes. Another application of (2E.7), with the free
energy of the cube containing R on the right side of the inequality, resultsin a
lower bound to f;. Combining both estimates one can show that if R is large
enough and its shape not too pathological, f; is close to f.

2. Conditions for stability with pair potentials
Let us suppose that the potential energy U is a sum of pair potentials:

U= ) &(;—r)) (2E.11)

i<j

where we suppose that @(r) and &(—r) are identical. It is of interest to know
what conditions on @ will insure stability, (2E.3). At present the necessary
conditions on @ are not known (Lenard and Sherman, 1970), but there are
certain sufficient conditions which seem to cover all cases of practical interest
(RSM, pp. 33 fI).

Obviously, if @ is non-negative for all r, (2E.3) is satisfied with B = 0.
Also if @ has a ““hard core’’, that is, for some a > 0,

&(x) = +o0 for |r| <a, (2E.12)

the stability problem is relatively simple because there is a maximum density
of particles. In this case one need only require that @ not be too negative at
large distances. Thus if

P(r) > —¢(Ir)), (2E.13)
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where ¢(r) is a positive, bounded, monotone decreasing function with the
property that, in d dimensions

f " p(ryritdr < oo, (2E.14)

then the interaction of one particle with all other particles in the system is
(because of the maximum density) bounded below and (2E.3) is satisfied for
a suitable choice of B.

In cases where @ does not have a hard core the stability problem is more
subtle. A fairly general condition (Ruelle, 1963a; RSM, p. 38) which
guarantees stability is that ¢ can be written in the form

¢ = @1 + @2 (2E.15)

where @, is a positive function and @, a (real) continuous function of
positive type, that is, the Fourier transform of a positive intergrable function
A more restrictive but rather more transparent condition is the following, due
to Dobrushin (1964) (see RSM, p. 38). Let ¢, and ¢, be positive decreasing
functions for 0 < r < a; and a, < r < oo, respectively, which satisfy

J 1(}Sl(r) ri=ldr = 4 o0, f d,(MNr*"1dr < . (2E.16)
0 az

Then if @ is bounded below, the conditions
o(r) = () for |r| <a
D(r) = —Py(lr) for [r| > a,

guarantee the stability of @. The first requires that & diverge to infinity at a
sufficiently rapid rate as |r] — O and the second that if negative it go to zero
sufficiently rapidly as |r] — co.

The condition of “super stability”’ is sometimes useful. (See RSM, p. 40;
Ruelle, 1970. The latter gives a stronger condition on U than the former.)
If @ is stable and & is continuous, non-negative, and strictly positive at
r=0,% + & is superstable. It seems that most stable pair potentials are
superstable, the only important exception being the case of free particles,
¢ =0 for all r.

(2E.17)

3. Basic inequality with strong tempering

We shall illustrate the derivation of an inequality of the form (2E.7) using the
case of a pair potential, (2E.11), with

o) <0 for |[r] > ry, (2E.18)

a situation which Fisher (1964a) calls “‘strong tempering’’.
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Consider a region Q containing two other regions Q' and Q' (Fig. 2)
separated by a distance at least equal to r,. We shall derive an inequality
relating Qg, (2E.1), to Q, and Q... The integral (2E.1) will only decrease if
we restrict the domain of each variable to Q' U Q". By classifying contri-
butions to this integral according to the number of particles N’ in Q’, we
obtain

1 N!
QQ(N) = TV—!"N'+1ZVV';'=N__—N'! N1 fn' dl‘1 o dl‘Nr

X f der+1 ...f dl‘N eXp (—BUN' - ﬁUN” - ﬂW) (2E.19)
QH ﬂli

where Uy, includes all pair interactions for particles in €', Uy. those for
particles in Q”, and W the contributions when one particle is in Q' and the
other is in Q". The strong tempering condition implies that W is negative,
so that if it is set equal to zero, the right side of (2E.19) will only decrease.
Finally, since the entire sum must exceed any given term in the sum, we have

Qa(N) = Qo (N') Qo(N — N') (2E.20)

which leads immediately, with the definition (2E.1), to an inequality of the
form (2E.7) with / =2 and ¢ = 0.

2

Fi1G. 2. The region Q contains two regions £2’ and 2" separated by a distance not less than
ro.

The requirement that Q' and Q" be separated by at least 7, must be kept
in mind but causes no particular difficulties in arguments (iii) and (iv) of
Section 1 above. One can choose as the special sequence a series of cubes of
edge 2L, with “thick-wall”’ boundary conditions in which a particle is not
permitted closer than r,/2 to the boundary of the cube. For cubes of large
size and provided the particle density is less than close packing (for potentials
with a hard core), the special boundary condition has little influence on the
free energy. Indeed, one can use this special sequence of cubes to show that a
nequence of cubes with the ordinary “thin wall’’ boundary conditions has the
sume thermodynamic limit.
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In situations other than strong tempering it is necessary to have some
upper bound on W in (2E.19) in order to obtain a useful inequality of the
form (2E.7), and this is discussed in Section 5 below.

4. Quantum continuum Systems

Consider a quantum gas of N identical particles for which the Hamiltonian is
given formally by

H = —@*2m) Y, 4; + U(ry, ... ry) (2E.21)

with 4; the Laplacian for the coordinate r;. We suppose the particles are
confined to a region Q. The first non-trivial problem is to obtain, starting from
(2E.21), a well-defined self-adjoint operator on the Hilbert space of square
integrable functions (for r; in Q, i=1,2,... N) with proper symmetry
depending on whether the particles are bosons or fermions. The boundary
conditions at the “walls” of Q enter in a non-trivial way, and although one
would expect the bulk thermodynamic properties to be independent of
boundary conditions (within reason), this is not easy to prove in general.
Ruelle (1963b and RSM, p. 61) has used ‘“hard-wall”’ boundary conditions
in which the wave function vanishes at the boundary, and Novikov (1969)
and Robinson (1970 and private communication) have considered some
other possibilities.

Once the Hamiltonian has been properly defined, one must show that in
the formula for the canonical partition function,

Zo(N) = Tr[exp (—B# )] = exp (—BVofo) = AN Qa(N) (2E.22)

which replaces (2E.1), the trace (Tr) is well-defined, etc. These problems are
discussed in RSM, pp. 60ff, and we shall present here only an intuitive, non-
rigorous summary of the required modifications in the classical argument as
presented in Section 1 above.

The order of attack in the quantum case is precisely parallel to the steps (i)
to (iv) given in Section 1. The stability condition in the quantum case is that
the lowest eigenvalue of 5 for a system of N particles must be bounded
below by —BN, with B some constant independent of N. This will, in
particular, be the case if the potential U in (2E.21) satisfies the classical con-
dition (2E.3), because the kinetic energy, the first term on the right side of
(2E.21), is a positive operator, that is, it has no negative eigenvalues (we are
assuming “‘hard wall”’ boundary conditions). Hence stability for the classical
problem insures stability for the quantum problem. The converse is not

necessarily true, a notable exception being the case of Coulomb interactions
(see G.1).
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The basic inequality (2E.7) for the quantum case may be obtained by an
argument similar to its classical counterpart, as is seen most easily in the case
of strong tempering (Section 3). We wish to show that (2E.20) is valid with Q
replaced by Z and (as before) regions Q' and 2"’ in Q separated by a distance
at least equal to r, (Fig. 2). We note that the trace (2E.22) decreases if the
particles are confined to Q' U Q"' rather than permitted anywhere in Q, since
this restriction increases the kinetic energy and hence the eigenvalues of 7.
“Turning off”’ the interaction between pairs of particles, one in Q' and one in
Q. 1s equivalent to adding a positive term to the Hamiltonian, thus again
increasing its eigenvalues and decreasing the trace.

Once the basic inequality (2E.7) is in hand, the remaining arguments for a
thermodynamic limit in the quantum case are identical to those in the
classical case, since they involve considerations which are essentially
geometrical in character.

5. General potentials and (weak) tempering

We consider a stable potential U(r,, ... ry) satisfying (2E.3) which is invariant
under permutation of its arguments and also translationally invariant, that is

Uy +s, 1, +8,...ty +8) = U(ry,rp, ... Iy) (2E.23)

for any s, but which need not be the sum of pair potentials. Following the
usual convention, we assume that U(r;) = 0. We shall assume that if U takes
on the value + o0 (— oo is excluded by stability) for some choice of arguments
£, ... £y, then also

U(fl, ces fN’ l‘l', e rfw) - + (0.0) (2E.24)

foranyr,’, ... ry.. (Equivalently, one may assume that U is the sum of 2-body,
3-body, 4-body, etc. interactions, RSM, p. 30.)

Consider two groups of particles with coordinates ry,r,,...ry and
r,’,r,’, ... ry.. The mutual interaction W between the two groups is defined by

WNN' = U(l'l, ces l'N, 1'1', cee rivr) -— U(l‘l, see I'N) - U(l‘l', cee r;w) (2E.25)

with the provision that W = 0 if either of the last two terms on the right-hand
side is infinite. The potential U is said to be tempered (RSM, p. 32) or weakly
tempered (Fisher, 1964a) if there is an R, > 0, a A > d (in d dimensions), and
constant 4 > 0 such that

WNN' < ANN, r_'l (2E.26)
whenever
I, —r/| =r =R, (2E.27)
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foralli=1,2,... Nandj=1,2,... N'. That is to say, the mutual interaction
must not be too positive when the two groups of particles are well separated
from each other.

In the case of pair interactions, (2E.18) implies (2E.26) with 4 = 0; more
generally one must require that for all sufficiently large r,

&(r) < Alr] ™ (2E.28)

for some A > d. This condition should be compared with (2E.17). The
combination of stability and tempering insures that & - 0 as |r| - o0, a
result which seems a very reasonable requirement for the existence of a
thermodynamic limit, but neither condition implies this by itself.

6. Thermodynamic limit for general interactions

The free energy f,, is defined by (2E.1) in the classical case and (2E.22) in the
quantum case, and pg, is defined (2E.2). The chemical potential u is defined by

234 = e, (2E.29)

THEOREM 2.2. Let U be a stable, tempered potential translationally invariant
and invariant under permutation of its arguments. Let there be a sequence of
domains Q tending to infinity in the sense of Fisher. Then the following results
hold for classical systems and quantum systems of identical fermions or bosons:

(i) The limit

p = lim p, (2E.30)
-

exists for T > 0 and — o0 < p < o0, except that for a system of bosons the
limit may exist only for p < po (depending on T), in which case pg, tends to + oo
Jor p > po.

(ii) If N goes to infinity together with Vg in such a way that N[V, tends to a
limit p, then there is a p,, (which may be infinite) such that the limit

f= lim fj, (2E.31)
- o
exists for T > 0 and 0 < p < p,,, and for p > p,, fo tends to + oo, while for
P = Pm>
liminff, > lim f(p). (2E.32)
Q P~ Pm~
(iii) The limiting functions f and p possess certain convexity and mono-

tonicity properties (7 below) and yield identical thermodynamic properties
(F, below).
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For the proofs, see RSM, Ch. 3. The definition of a sequence of domains
tending to infinity “in the sense of Fisher’ is found in RSM, p. 14; it is more
restrictive than ““in the sense of Van Hove”, but still includes most cases of
practical interest. The exceptional behaviour of Bose systems mentioned in
part (i) of the theorem actually occurs in the ideal Bose gas where it is
connected with Bose condensation. However, with a superstable potential
(see Section 2) this anomaly is removed and the pressure has a finite limit for
all u (Ruelle, 1963b).

7. Properties of the limiting functions

The limiting pressure (2E.30) has a number of important properties: (i) Itis a
convex function of u and T together. Convexity corresponds to the usual
requirements of thermodynamic stability (Callen, 1960, Ch. 8) and also
guarantees that p is a continuous function of both variables (except, perhaps,
at u = u, in the case of bosons). In addition, p is (ii) non-negative, (iii) mono-
tone increasing in u for fixed T, (iv) tends to zero as 4 — — o0, (v) for quantum
systems, but not for classical systems, p is monotone increasing in T for fixed
u. Condition (iii) corresponds to the fact that the density p = dp/du is non-
negative, and (iv) to the reasonable result that p tends to zero with p.
Condition (v) corresponds to a non-negative entropy per unit volume
s = dp/oT.

The limiting free energy f in (2E.31), the Helmholtz free energy per unit
volume, is (i) convex in p for fixed T and concave in T for fixed p—the usual
stability conditions. These in particular imply that fis a continuous function
of both variables except, perhaps, at p = p,,. In addition, (ii) as a function of
v = p~1, vf (the free energy per particle) is monotone decreasing in v for
fixed T, which corresponds to a positive pressure p = — d(vf")/0dv, (iii) f tends
to zero as p — 0, (iv) for quantum systems, not classical systems, f is mono-
tone decreasing in T for fixed p (s = — of/0T = 0).

These properties can in certain cases be deduced from the corresponding
properties of f, and p, (e.g., the convexity and positivity of p, but not the
convexity of fas a function of p). Or they can be obtained as a by-product of
the proof of existence of the thermodynamic limit, or from properties of the
“microcanonical’”’ thermodynamic functions to which p and f are related by
Legendre transformations as discussed in Section F below.

F. Equivalence of ensembles

1. Equivalent thermodynamic descriptions

One can (see E above) obtain a thermodynamic limit for the Helmholtz free
energy per unit volume f(p, T) or the pressure p(u, T) for a continuum gas.
These two functions give an equivalent thermodynamic description of the
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system (Callen, 1960) if they are related by a Legendre transformation. This
means that for any fixed temperature we can write

p() = pu — f(p) (2F.1)

g = of|op. (2F.2)

The relationship makes sense if for each u there is an unambiguous value of p
determined by (2F.2) which can be inserted on the right-hand side of (2F.1).

with
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(a) (b)

FiG. 3. Geometrical construction to obtain p(u) from f(p) or vice versa.

The geometrical significance of (2F.1) becomes clear from examining a
graph, Fig. 3(a), of f(p). If a straight line of slope u is drawn tangent to the
graph of f(p), it intersects the f axis at the value — p(u). Since f(p) is convex,
the value of p(u) is completely unambiguous even in cases where f has a “flat
region’’, that is, the graph of fhas a portion which is a straight line, Fig. 4(a),
and consequently there is a u for which (2F.2) does not yield a single value
for p.

The inverse transformation to obtain f(p) from p(u) is formally identical,
as illustrated in Fig. 3(b). A line of slope p drawn tangent to the graph of p(u)
intersects the p axis at —f and, incidentally, the pu axis at f/p, the free energy
per particle. Nor is there any ambiguity if one has a situation, as in Fig. 4(b),
where p has a “kink’ or discontinuous first derivative. Several lines may be
drawn tangent to the graph of p(u) at this point and each of them gives a
particular f(p). Of course, the graph of f(p) will have a flat spot for values of p
lying between the left- and right-hand derivatives of p(u) at the position of
the kink and, in the reverse direction, a flat spot in f(p) leads to a kink in

p(w). The kink in p(u) (or flat spot in f(p)) is characteristic of a first-order
phase transition.
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The analytic expressions for the geometrical constructions just mentioned
are (Mandelbrojt, 1939; see also Griffiths, 1965b)

p() = sup [pu — f(p)] (2F.3a)

f(p) = sup [pu — p(W)], (2F.3b)

the supremum to be taken, in both cases, over the range of values where f
(respectively p) are defined and finite, say p >0 (—c0 < u < 0) for a
classical gas without a hard core. Sometimes (2F.3) is called a “‘generalized”
Legendre transformation, since (2F.3a) is equivalent to (2F.1) as long as f(p)
has a continuous and strictly monotone first derivative. Of the properties of
(2F.3), we mention two in particular. The function p(u) defined in (2F.3a)
starting with an arbitrary function fis always convex over the interval on the
u axis where it is finite (it may, of course, not be finite anywhere). Further if
one inserts in (2F.3a) a convex function f defined on some interval of the real
axis and then inserts the resulting p in (2F.3b), the result is the original
function f apart from possible changes at the end points of the original
interval of definition. This is the justification for asserting that if fand p are
related by a (generalised) Legendre transformation they yield equivalent
thermodynamic descriptions: one function can always be generated by (2F.3)
if the other is known. In particular, no ambiguity arises at first-order phase
transitions, as in Fig. 4, a point on which the older discussions of equivalence
(e.g. Hill, 1956) are not always clear.

(a) (b)
F1G. 4. The functions f(p) and p(z) when there is a first-order phase transition.
The generalisation of (2F.3) to cases of more than one variable is straight-

forward (for a mathematical discussion see Fenchel, 1949). Thus let &(p, s)
be the energy per unit volume as a function of density and entropy (per unit
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volume); we assume it to be a convex function of both variables defined on a
convex domain in the p, s plane. One may obtain the pressure by first defining

flp, T) = inf [e(p, 5) — sT] (2F .4)
and inserting the result in (2F.3a) or directly from the expression
p(u, T) = sup [pp + sT — &(p, 5)]. (2F.5a)
P»S

The inverse relation

e(p,s) = sup Lou + sT — p(u, T)] (2F.5b)

yields the same (convex) function ¢ employed in (2F.5a) except, possibly, for
changes at the boundary of the (convex) domain in the p, s plane where it is
defined. (The problem of what to do at the boundary points, which seems to
be of more mathematical than physical interest, is discussed by Fenchel, 1949;
see also Minlos and Povzner, 1967.)

Galgani and Scotti (1969) have pointed out that if one starts with a function
¢ which is convex in several variables and carries out a Legendre trans-
formation analogous to (2F.4) in some of these variables, the resulting
function is concave in the new variables and convex in the remaining set of
original variables. Thus in (2F.4) fis concave in T and convex in p. (Their
analysis does not, unfortunately, include a discussion of the domains where
the functions are defined.) The importance of this result is that it shows the
equivalence of thermodynamic stability conditions expressed in terms of
different thermodynamic potentials.

2. Thermodynamic equivalence of ensembles

In view of the remarks in Section 1, the task of showing that the canonical and
grand canonical ensembles yield equivalent thermodynamic functions
reduces to showing that f and p are related by the Legendre transformation
(2F.3). In order to avoid purely technical difficulties, we illustrate the
argument for the case of particles with hard cores in which Q,(N) vanishes
for N > p,.Vo, p.. 18 the finite “close-packing’ density. We may then write
(2E.2) with the help of (2E.1) and (2E.29) as:

pPmV
oxp (Wora) = 3 oxp (BValNuVa —fa@]}.  (F6)

It is clear that the right-hand side exceeds the maximum term in the sum, but
is less than p,,V, times the maximum term. Hence if we define

ba(w) = max [Nu/Va = fa(N)] QF.7)
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it is evident that
Po < po < P+ (BVa) ' log (0, Vo) (2F.8)

and hence if p,, tends to a well-defined limit as Q — o0, p,, tends to the same
limit.

Let f be the limit of f,, given by Theorem 2.2 and define f(p,,) as the limit
of f(p) as p < p,, tends to p,,. Also define

p*(w) = sup [pu— f(p)]. (2F.9)

0spSpm

We shall show that as Q — o0, p, (and hence p,) tends to p*.
For a given value of yu and some 6 > O there is a p; < p,, such that

p1u —f(py) = p*(w) — 6/2. (2F.10)

Now if we choose a sequence N, such that N,/V, — p;, it is evident from
(2F.7) and Theorem 2.2 that

liminfpo(u) = py p — f(p1) = p*(w) — 6/2 (2F.11)

Q-

and since the choice of & was arbitrary, the left side cannot be less than p*(u).
On the other hand, if for some § > O,

lim sup po(u) = p*(u) + 6, (2F.12)

Q-

then we can choose a subsequence of regions Q tending to infinity and
corresponding particle numbers N, such that N,/V,, tends to some value p,
in the closed interval [0, p,,] and such that for this subsequence

UNg[Va — fo(Ng) 2 p*() + 6/2 (2F.13)

But the limit of the left side cannot exceed up, — f(p,) by Theorem 2.2 even
in the case p, = p,,, and this contradicts (2F.9).

Note that the above argument (which is adapted from Galgani et al., 1971)
cstablishes existence of a limit in the grand canonical case as well as its
equivalence to the canonical case on the basis of the (previously established)
cxistence of a thermodynamic limit for the latter. Indeed, Ruelle’s procedure
(RSM, pp. 41ff) is to first establish the existence of a limit for the micro-
canonical ensemble and then use various properties of this limit to establish a
limit for the other ensembles. His arguments for equivalence have been
somewhat simplified by Galgani et al. (1971).
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G. Systems with long-range forces

1. Coulomb interactions

Although Theorems 2.1 and 2.2 are of considerable generality, the potentials
allowed do not encompass all cases of physical interest. In particular the
Coulomb interaction with a 1/r potential (d = 3) does not satisfy the stability
condition (2E.3) when particles are present with opposite signs of charge, nor
is it tempered, (2E.26), when one considers particles with the same sign of
charge. It is clear that the existence of a thermodynamic limit in the usual
sense—-a pressure or free energy per particle which depends only on the
average density and not on the shape of the container, etc.—can only be
expected for a neutral system, equal amounts of positive and negative
charge, or a system which is very close to neutral.

In a classical gas of point particles with both signs of charge and purely
Coulomb interactions, it is obvious that one does not have stability, in fact
the potential energy has no lower bound at all, much less one of the form
(2E.3). (A lower bound exists if one assumes the particles have hard cores in
addition to the Coulomb interaction or that the charges are ‘“‘smeared’’ over
a small region: Onsager, 1939; Fisher and Ruelle, 1966.) There is more hope
in the quantum-mechanical case since here (see Section E.4) the stability
requirement is a lower bound on the total energy, kinetic plus potential, and
an attempt to place two particles of opposite sign very close to each other to
obtain a large negative potential energy leads to a large compensating
positive kinetic energy. Indeed, Fisher and Ruelle (1966) were able to show
that the energy in the quantum case has a lower bound going as N3, which
represents some progress though it is still not good enough to permit a proof
of the existence of the thermodynamic limit. Dyson and Lenard (1967);
Lenard and Dyson, (1968) in a pair of papers showed that if all the particles
of one sign of charge, say the negative particles, are fermions, then a lower
limit exists proportional to N. (The negative particles may belong to several
species of fermions but the number of species must be finite. For other
restrictions on the charges and masses, see the origihal papers.) Thus not
only is it essential to have quantum mechanical particles, but the Pauli
exclusion principle plays an important role. Indeed Dyson (1967) has shown
that without the exclusion principle the ground state energy will in general
tend to minus infinity at least as rapidly as N'/°,

Even with stability in hand, a proof of the thermodynamic limit for
Coulomb systems poses severe problems because of the long-range nature of
the forces and consequent violation of the tempering condition. Recently
Lebowitz and Lieb (1969) have used a clever trick to get around these
difficulties and in subsequent work (Lieb and Lebowitz, 1971) have been able
to show that not only does a neutral system tend to a well-defined limit, but
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that if there is an excess of charge of one sign there is an additional ‘“‘surface
charge” energy depending on the shape of the container for a large system.

2. Dipolar interactions

Electric or magnetic dipole-dipole interactions also give rise to long-range
forces. In a model in which the dipoles are place on lattice sites (which is of
some interest for theoretical studies of magnetism in solids) or on particles
with hard cores, it is not difficult to establish the stability of the dipole
potential (Fisher and Ruelle, 1966). Howeyver, it is known that the long-range
part of the dipole interaction, which falls off as r 2 (d = 3) and has an im-
portant directional dependence, can lead under certain circumstances to a
shape-dependent free energy (the “demagnetising’ or “depolarising’ effects
—see, for example, Brown, 1962, Chs. 2, 3) when there is an external field
present to align the dipoles. When such a field is absent, Griffiths (1968) has
shown that for dipoles on a lattice there is a well-defined shape-independent
thermodynamic limit for the free energy. However, there seems to have been
no progress to date in proving that in the more general situation with an
external field one obtains an appropriate limit with the expected shape
dependence.

H. Correlation functions

1. Introduction

In addition to well defined values for thermodynamic potentials in the
infinite volume limit, one might hope to find that other statistical properties,
such as the probability of finding a certain number of particles in some fixed
finite volume, or the pair correlation function (of interest in scattering
experiments), would tend to well defined limits for an infinite system,
independent of details of the shape of the container and the boundary
conditions at the walls. The problem of showing that a limit exists is not very
simple because one expects there will be circumstances, in particular when
there are phase transitions, when these quantities will depend on “boundary
conditions’’ even if the boundaries become infinitely far away.

A general discussion of the probabilities of finding various situations in
finite regions of an infinite system is most conveniently carried out using the
C*-algebra approach,} and numerous results of a fairly general nature have
been obtained. Many of these are discussed in RSM, Chs. 6 and 7, and the
references cited there. Later contributions include Lanford and Robinson
(1968), Lanford and Ruelle (1969), Miracle-Sole and Robinson (1969), and
various articles in the book edited by Michel and Ruelle (1970). A parallel

T See the article by P. M. Levy in proposed Vol. 5 of this publication.
1 See the article by G. G. Emch in this volume (Chapter 4).
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line of attack has been employed by Dobrushin (1968a, b, ¢, 1969) and Minlos
(1967 a, b); for a review of some of Dobrushin’s work, see Ginibre (1970a).

2. Correlation functions as derivatives of the free energy

Rather than discuss in detail the developments just alluded to (for which the
present author is, in any case, unqualified), we shall make some remarks
about the situation in lattice spin systems (which are, as usual, simpler than
their continuum counterparts), adopting a point of view which relates the
correlation functions to “thermodynamic’ properties.

Suppose we have a Hamiltonian which is invariant under translations of
the lattice and we are interested in a particular correlation function
{04 020, Where the angular brackets denote a thermal average. That is,

(0>q = Tr [0 exp (— B o)1/ Tt [exp (— Bt )] (2H.1)

where Q is a finite set of sites and @ is any operator on the corresponding
vector space. (For a classical spin system @ is any function on the con-
figurations of Q, the trace becomes a multiple sum over ¢,, 6,, ... 6y, and the z
subscript can be omitted from the o’s.)

One might hope-that as Q became infinite (in some sense), { 6y, 6, o Would
tend to a limit depending only on

8 = l‘l - l'k (2H-2)

and not on the absolute location of the sites. This makes it reasonable to
consider the “‘averaged’ correlation function

Ca(®) = Vo ! Z {02 G480 (2H.3)

where i + 6 is the site located at r; + 8 and the sum is restricted to the case

where both i and i + 8 lie in Q. The advantage of using (2H.3) is that we can
write

Co(8) = =B~ (0fal0M)1=0 (2H.4)
where
exp (—BVofo) = Tr{exp [—B(H# o + A *)]} (2H.5)
with
H* = Zo'zi Ozi+8 (2H.6)

That is, by adding to our Hamiltonian a (translationally-invariant)
perturbation AJ£*, we can express the averaged correlation function as a
thermodynamic derivative. It is then a natural question to ask whether, in the
thermodynamic limit,

C(8) = =B~ 1 (0f/04);=0 = ? lim Cq(3), (2H.7)
-+ 00
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where fis of course the limit of £, as Q tends to infinity in some suitable sense.
Under fairly general conditions (Sections B or C, Theorem 2.1) one knows
that f exists and is a concave function of A. Thus df/0A is a monotone de-
creasing function continuous everywhere except for, possibly, a countable
number of jump discontinuities. It is not hard to show (e.g., Griffiths, 1964a;
Fisher, 1965b) that if 9f/0A is continuous at 4 = 0, the limit on the right side of
(2H.7) exists and is equal to the left side. Thus with a little bit of luck (the
discontinuities of df/04 form a set of measure zero on the A axis) we should
find the averaged correlations approaching a well defined limit independent
of (reasonable) boundary conditions. For a somewhat more sophisticated
argument in the same vein, see Gallavotti and Miracle-Sole (1967) and
RSM, p. 184. Unfortunately, there is no way of knowing, in general, when
one will be lucky! And even in the situation where the averaged correlation
function is unique thare is no guarantee that the correlation for a particular
pair of sites (separated by 8) will tend to the same limit.

Of course the same procedure (of adding a suitable perturbation to the
Hamiltonian) may also be used for singlet, triplet, etc. correlation functions
as well as the pair correlations. In the algebraic approach one refers to the set
of all correlation functions involving a finite number of lattice sites (i.e., each
correlation function involves a finite number of sites) of an infinite lattice as
a ‘“‘state’ of the infinite system. It is then an interesting question to ask which
states can be obtained as limits of finite systems with suitable boundary
conditions. A discussion of this question is beyond the scope of the present
article, and we refer the reader to RSM, Ch. 7, Lanford and Ruelle (1969),
Dobrushin (1968b, c) and Ginibre (1970a). A non-unique limit is generally
associated with some sort of first-order phase transition (we consider some
examples in Section V below) and may indeed be considered as a possible
definition of a phase transition.

An approach very similar to the one we have described for lattice systems
can also be used in discussing correlation functions for continuum systems
(Fisher, 1965b). An additional complication is that the addition of a many-
body potential may in some cases violate stability, or at least it is rather
difficult, in general, to rule out this possibility.

A very different procedure for analysing correlation functions, applicable
in the limit of sufficiently low density, is discussed in Section III below.

I1l. Low Density Expansions

A. Introduction

A knowledge that the free energy or pressure possesses a well-defined thermo-
dynamic limit does not of itself tell one anything about the presence or
absence of phase transitions. Fortunately, it has been possible to obtain
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much more detailed information about a number of systems in the regime of
low density (or weak interaction) by starting with the properties of a system
of non-interacting particles and treating the interactions by means of
perturbation series. Techniques for generating these series have been known
for some time. More recently it has been possible to show that some of these
series have a finite radius of convergence and that in the thermodynamic
limit the thermodynamic functions and correlation functions are independent
of boundary conditions and depend analytically on thermodynamic para-
meters within the region of convergence. Thus these proofs of convergence
show that in certain regions of the thermodynamic parameter space one can
be certain that phase transitions do not occur. The term ‘“phase transition™ is
used in various ways, among them (i) non-analytic dependence of the free
energy or pressure on thermodynamic variables; (ii) the sensitivity of
correlation functions to the choice of boundary conditions, even when the
boundaries become infinitely far away. It is suspected that these two ideas are
closely allied (Lanford and Ruelle, 1969), but at present the precise relation-
ship is not known. The aforementioned convergence proofs usually rule out a
phase transition in either sense within the region of convergence.

Our discussion will be limited to classical continuum and lattice systems.
Analogous results for quantum systems are discussed in a separate article.

B. Classical gases

1. Pressure and correlation functions

One of the best-known perturbation series is the virial series for a classical
gas (Hill, 1956; Uhlenbeck and Ford, 1962). The grand partition function &,
for a finite region Q is a power series in the activity z, eqn (2E.2), with infinite
radius of convergence in the case of a stable potential, as one can show using
the bound (2E.4). Since 5, =1 at z = 0, the series

ﬁp_Q = Vgul log EQ = lzl bl(Q)Zl (3B.1)

will have some finite radius of convergence which may depend on Q. In the
case of pair interactions, (2E.11), satisfying reasonable conditions it is not
difficult to show that the 5,(Q) have limits b, as Q becomes infinite (assuming
a suitable sequence of regions), and thus at least formally one can write the
pressure of the infinite system as

Bp = 21 b, 7 (3B.2)

t See the article by J. Ginibre in this volume (Chapter 3).
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We shall call (3B.2) (and the analogous series for correlation functions) a
*““virial series’’ even though that term more often refers to a series in powers of
the density p defined by

p=Bzdploz =Y Ib7z" (3B.3)
1=1

It is not obvious a priori that (3B.2) has a finite radius of convergence, and
even if it does there remains the question whether the function so obtained
agrees for physical (real positive) values of z with the thermodynamic
pressure whose existence we discussed in Section II.LE. Of course, similar
questions arise concerning a series in powers of p.

The correlation function p,(r, ... r,) defined (at least for real positive z) by

Eqpa(y...1,) =z"exp [- U, ... 1,)]

+ '21 (2"*"/n !)J'Q dr,,;q...dr,,exp[—BU(r; ... 10 0], (3B.4)

where the integrations are restricted to the finite region €, is the probability
density for finding one particle at r,, a second particle at r,, a third at r,, etc.,
in the grand canonical ensemble for a gas of identical particles. Just as with
the pressure, p, may be expressed as a power series in z whose coefficients
can, under similar conditions, be shown to converge to well defined limits as
Q — 00. Once again, it is of interest to know whether the series has a finite
radius of convergence in the infinite volume limit and whether in the region
of convergence it is equal to the limit of p, as 2 — 0.

The first proofs of a finite radius of convergence, Bogoliubov and Khatset
(1949) and Groeneveld (1962), were restricted to the case of a positive
potential @ > 0. In later work (Ruelle, 1963c, 1964b; Penrose, 1963a, b, 1967;
Groeneveld, 1967) the condition of positivity was replaced by weaker con-
ditions on @. So far as we know, analogous results are not yet available for
cases where the energy involves 3-body, 4-body, etc. potentials. '

In Section 2 below we shall follow Ruelle (1963c, RSM Ch. 4) and indicate
how the convergence of the series may be deduced from properties of an
integral equation for the correlation functions.

2. The Kirkwood-Salsburg equations; convergence of series in z

We assume the potential energy U is a sum of pair potentials, (2E.11), chosen
so that the stability criterion (2E.3) is satisfied and so that

C(B) = [drlexp (— o)) — 1| < 0. (3B.5)

The derivation of the following equations, the Kirkwood-Salsburg equations
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is reasonably straightforward (Kirkwood and Salsburg, 1953; Hill, 1956,
p. 251; RSM, p. 72). The correlation functions p are defined in a finite region
Q (we have omitted the subscript Q) and the integrals are carried out over the
same region:

p(ry) =z { Z (n)~! J.dl'z oo dry g K31, o By ) p (X2 o l'n+1)}
p(y..r,)=zexp[—BW(x;...1,)] {p (x,...r,)

+ Zi (n!)_l _‘-drm+1 dl'm+n K(rl;rm+1 l-m+n) p(l'2 l-m+n)} (3B6)

where

Wi,y ..r,) = i & (T — 1) (3B.7)

is the total interaction of particle 1 with particles 2, 3, ... m, and

K @5 trt o Td = 111 = T (3B.8)
with
£ — 1)) = exp [— O, — 1)1 — 1, (3B.9)

the f function familiar in the graphical development of the virial series
(Uhlenbeck and Ford, 1962).

Of course, (3B.6) is a rather complicated set of coupled integral equations.
The key to obtaining a solution is to note that the terms on the right-hand
side are multiplied by z, which is to be regarded as a small parameter. The
procedure for generating a series expansion in z is perhaps more transparent
with a change in notation. Let p be an infinite-dimensional vector whose nth
component p, is the correlation function with » arguments, and let 1 be a
vector whose first component is 1 and other components are zero. The
equations (3B.6) may be written formally as

p=7z1+zLp (3B.10)

where L is a linear operator whose detailed definition is given by (3B.6).
Successive approximations to this equation may be obtained by inserting
p = 0 as a zeroth approximation on the right-hand side, which yields

p) = z1 (3B.11)
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(that is, p;(r;) = z, p, = O for n > 2) as a first approximation. Inserting this
on the right side of (3B.10) generates a second approximation, etc., and the
formal solution to (3B.10) is the infinite series

p = z1 + z?L1 + 2z3L(L1) + z*L(L(L1)) + ... . (3B.12)

The problem is to show that this series converges for small enough z. This
may be done by introducing a suitable Banach space and estimating the norm
of L in this space (Ruelle, 1963c; RSM, p. 74) or the more straightforward
technique of estimating the magnitude of the various contributions to
p(ry ...1,) in (3B.12) (Penrose, 1963a; RSM, p. 90). Convergence can be
demonstrated provided

lz| < [C(B)exp (1 + 28B)] %, (3B.13)

where B is the quantity appearing in the bound (2E.3). For a positive potential
¢ >0, set B=0in (3B.13).

Not only does the sequence (3B.12) converge, it is also the unique solution
to (3B.6) for z inside the circle (3B.13), at least among solutions for which
p(ry ... r,) is symmetric, that is, unchanged by any permutation of its
arguments.f Consequently, for any finite Q, p,(r, ... r,) obtained in (3B.12)
coincides with p, defined in (3B.4). On the other hand, the equations (3B.6)
make perfectly good sense if one drops the restriction that the arguments of p
and the integrations be confined to a finite region Q. The resulting infinite-
volume equations again have solutions given by (3B.12) for |z| satisfying
(3B.13).

After establishing certain very reasonable results, that the pq(r, ... r,)
converge to the infinite value p(r, ... r,) (RSM, p. 77) and that the average
density p, = zB0po/0z for a finite system converges to p(r;) = constant as
Q — oo (RSM, p. 83), one obtains the following theorem.

THEOREM 3.1. For z inside the circle (3B.13), the correlation functions
po(ry ... T,) for a finite system Q tend to well defined limits p(r, ...1,) as
Q — oo provided the minimum distance from x (and thus from all the r;, which
are held fixed during the limiting process) to the boundary of Q becomes in-
finite. The p(x, ...1,,) (and also the po(x, ...1,,)) are analytic functions of z
in (3B.13) and satisfy the Kirkwood-Salsburg equations (3B.6). Further, if

1 The equations (3B.6) single out the coordinate r; for special treatment, so that it is not
immediately obvious, though it is true, that the successive terms in (3B.12) are all sym-
metric. It is evident from (3B.4) that only symmetric solutions of (3B.6) are of physical
interest.
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Q — o0 in the sense of Van Hove, the pressure pq tends to a limit p which is an
analytic function of z, with the property that

p = p(ry) = zBop|oz, (3B.14)
for z in (3B.13).

3. Additional results
(a) Density as a variable

Once the pressure and correlation functions are given as convergent power
series in z it is possible (in principle) to re-express them in powers of the
density p by reversion of the series

p=z+2b,z2* +3b;2° + .... (3B.15)

It is always possible (Titchmarsh, 1939, p. 199) to express z as a convergent
power series in p if |p| is sufficiently small. The radius of convergence of the
series p(p) is discussed by Lebowitz and Penrose (1964); see also RSM,
p. 85, and Lebowitz (1968). For a discussion of the series in p in terms of
graphs, see, for example, Uhlenbeck and Ford (1962).

(b) Cluster properties of correlations

In a dilute gas (and, more generally, in the absence of a phase transition) one
expects the correlations will be of “‘short range’ in the sense that

p(ry, 1) = p? (3B.16)
as |r, — r,| = oo; that is, the positions are uncorrelated when the particles
are sufficiently far apart. More generally, one expects the Ursell functions
u(ry, Iz) = p(ry, 1) — p(ry) p(ry),
u(ry, 13, r3) = p(ry, I, r3) — p(ry) p(rz, r3) (3B.17)
—p(r3) p(ry, 13) —p(r3) p(ry, ¥3) + 2p(xy) p(r3) p(rs),

etc. will vanish in the limit if the arguments of u(r, ...r,) can be divided
into two sets with the minimum distance between them tending to infinity.
Ruelle (1964a and RSM, p. 92) has established that this is the case in the
sense that

fdr, ...dr, lu(; ...x,)| < © (3B.18)

for z inside the circle (3B.13).

(¢) Analyticity in temperature

The Kirkwood-Salsburg equations can be used to show that the correlation
functions and the pressure are analytic functions of the temperature for real
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values of the latter (i.e., B in some suitable small region around the real,
positive f axis) provided (3B.13) is satisfied (Ruelle, 1964a). The strategy is
to note that the kernels K in (3B.6) as well as exp — BW! depend analyti-
cally on B and that (3B.12) for a particular p(r, ... r,) provides, with z
suitably small, a uniformly convergent series of functions analytic in S
(Titchmarsh, 1939, p. 95). Presumably, similar arguments could be used to
show that the correlations, etc., depend analytically on parameters entering
the potential @ in a suitable way.

In addition, Lebowitz and Penrose (1968) have shown that if the pair
potential has a hard core and satisfies certain other (fairly mild) restrictions,
the pressure and correlation functions possess a convergent power series in
p at B = O for |z| sufficiently small. For Lennard-Jones potentials Lebowitz
(1969) has shown that a somewhat analogous expansion, in nonintegral
powers of B, is valid near § =0, z = 0.

(d) Positive potentials

When the potential energy U is a sum of pair potentials (2E.11) which are

positive,
o) =0 (3B.19)

for all r, the results discussed above can often be improved and additional
properties demonstrated. Thus for a positive potential the successive co-
efficients in the virial expansion for p or for the correlation functions in
powers of z alternate in sign, and in addition the partial sums of the virial
series give alternating upper and lower bounds for the corresponding physical
quantities for z > 0 (Groeneveld, 1962; Lieb, 1963; Penrose, 1963b; RSM,
p. 93). The alternating sign indicates that the dominant singularity in the
complex z plane occurs on the negative real axis, and it is possible to give
both upper and lower bounds on the radius of convergence R (Penrose,
1963a; RSM, p. 95):

[eC(H] < RL[CP] (3B.20)

Within the circle of convergence the pressure and correlation functions are
analytic functions of (real) B as well as z (Lebowitz and Penrose, 1968).
Additional bounds on the virial coefficients have been obtained by Ree
(1967).

In the theory of phase transitions one is more interested in singularities in
the physical region, that is on the positive z axis. It is quite possible for the
functions of interest to be analytic for positive z extending well beyond the
radius of convergence. Indeed, Meeron (1970) has recently shown that for
positive potentials one can extend the region of analyticity to include

Izl < [C(BT"1; Real(z) > 0. (3B.21)
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C. Classical lattice gases

Consider an Ising lattice gas (Section 11.B) with a finite set Q of cells num-
bered 1,2, ... V. If 4 isa subset of Q, the probability p,(A4) that each cell in
the set A4 is occupied by one particle is given by

Zapo) = T - T ([]m) exo(=pobo) (C.1)

ny n2 ny \ied

An equivalent definition is obtained using (3B.4) with the condition that
U = + o if any two of its arguments are in the same cell (for a lattice gas
U only depends on which cells are occupied) and

z = exp(Bii). (3C.2)

Of course, the resulting py(r; ... r,) vanishes if two of its arguments are in
the same cell and in addition only depends on the set A of cells containing
the points ry ... 1,

In the case where U is a sum of pair interactions (2B.5), the p,, satisfy the
Kirkwood-Salsburg equations (3B.6) and one can use the techniques dis-
cussed in Section B above to show that for sufficiently small z (in magnetic
language, a sufficiently large magnetic field H) the correlations and thermo-
dynamic functions have infinite volume limits which are analytic functions
of z and B. “High Field” expansions in powers of z are often used in the
study of Ising models,} and the lattice counterpart of the Kirkwood-Salsburg
equations can be used to show that these series have a finite radius of conver-
gence.

Another set of integral equations (actually infinite matrix equations with
sums replacing integrals) making explicit use of special properties inherent
in a lattice gas has been developed by Gallavotti and Miracle-Sole (1968;
see RSM, p. 80). These are not limited to pair interactions. One can use the
more general form of interaction (2B.23) provided the &, are invariant under
translations and

D=Y"|d,] < oo, (3C.3)
A

where the sum extends over all sets A containing a particular site i, with
the exception that A= {i} is excluded from the sum. The ‘“‘one body”
interaction is —ji, as in (2B.4).

The solution to these equations (RSM, p. 82) can be expressed as a

T See the article in this series by D. S. Gaunt and A. J. Guttman in this publication (Vol. 3,
Chapter 4).
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convergent series similar to (3B.12), but with a more complicated dependence
on z, provided

2eP(P=0)

1 + zePD—O) [2 exp(ef?—1) —1] <1 (3C.4)

where
C = Z" b, (3C.5)
A

with the sum over all 4 containing a particular site i, but excluding A= {i}.
Within the region (3C.4) the correlation functions and thermodynamic
functions have unique infinite-volume limits which are analytic functions
of z and B. They are also, in a suitable sense, analytic functions of the
interactions.

The region (3C.4) includes a segment of the positive real axis

0<z<b (3C.6)

with b depending on the temperature. With additional restrictions on the
potential one can extend the region of analyticity to include the entire
positive real axis, if the temperature is sufficiently high, with the aid of a
certain symmetry property (Gallavotti et al., 1967; RSM, pp. 24, 112) which
is called “‘spin reversal’’ in magnetic language (o; > — o; for all i) and in
lattice gas language corresponds to interchanging the roles of occupied and
empty cells. In particu.ar, if

ni* = 1 - n,- (3C.7)
and n * is defined in analogy with (2B.22), the interaction

H* =Y &,*n,* (3C.8)
A

is formally identical with 52 in (2B.23) apart from a constant,} provided

P * = (=1)*WD ) &, (3C.9)
B2 A

with # (A4) the number of elements in the set 4. If the constant D*, defined
by replacing &, by @,* in (3C.3), is finite—this is an additional restriction
on the potential—one may use the equations for the correlations to establish
a region of analyticity

Z#eB(D*—C)

1 _I_Z*eﬁ(D"—C)

[2 exp(ef”—1) —1] <1 (3C.10)

1 We are here ignoring certain technical details, for which we refer the reader to RSM, p. 24.
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where
2% = exp(BE*) = z~* exp(BC), (3C.11)

with i* equal to — & ,* when # (4) =1. (One easily shows that C*, obtained
by substituting & ,* for &, in (3C.5), is identical with C.) The region
(3C.10) includes a segment

0<z < (0%t (3C.12)

of the real axis, with b* dependent on the temperature. With sufficiently
high temperatures (small enough B) one has b* in (3C.12) less than b in
(3C.6) and thus analyticity for the entire positive z axis.

For a discussion of the cluster properties of the correlation functions,
see the articles by Gallavotti and Miracle-Sole (1967, 1969).

IV. Zeros of the Partition Function

A. Theory of Yang and Lee

It was Yang and Lee (1952) who first pointed out the significance of the
zeros of the grand partition function

Eg=1+ Ni 2 Qa(IN)
(4A.1)

=1+ Nil (2 2)" Zo(N) = exp(BVapo)

for the theory of phase transitions. In the case of a classical gas [Q,(N)
given by (2E.1)] with a stable potential (2E.3), the bound (2E.4) shows that
the series (4A.1) has an infinite radius of convergence, that is, =, is an
entire function of z. In the case of a quantum gas [Z,(N) given by (2E.22)]
of fermions with a stable potential or bosons with a superstable potentialy
(RSM, p. 40), Z, is again an entire function (Ruelle, 1963b). Furthermore,
on the positive real z axis, the region of physical interest, =, has no zeros
since the Q,(Z,) are non-negative, and hence p, is an analytic function of z.
The same is not necessarily true of the pressure

p = lim p, (4A.2)

Q-
obtained in the thermodynamic limit, but the following theorem places a
restriction on where non-analytic behaviour may occur.

+ For an ideal (U=0) Bose gas, one of the few systems of interest which lacks a super-
stable potential, Eqp has poles on the positive z axis.
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THEOREM 4.1 (Yang and Lee). Let D be a bounded, simply connected region
in the complex plane with a segment of the positive z axis lying in its interior.
Suppose that for some sequence of regions Q tending to infinity: (i) the limit
(4A.2) exists on the segment of the positive z axis inside D; (ii) there is a
constant E < oo such that, for all z in D and every  in the sequence,

|Zql"V2 < E, (4A.3)

(iii) for each Q in the sequence no zeros of Eq occur in D. Then p can be extended
to an anlytic function p(z) throughout the interior of D and is, in particular,
analytic on the segment of the real z axis lying inside D. On any closed region
D’ in the interior of D the sequence p,(z), defined by analytic continuation from
the segment of the positive real axis in D, converges uniformly to p(z).

The proof consists in noting that, by Vitali’s theorem (Titchmarsh, 1939,
p. 168), the sequence of analytic functions

exp(fpo) = (Eo)''"e, (4A.4)

which is bounded on D and converges to a limit on a portion of the real z
axis inside D, converges to an analytic function in the interior of D and
converges uniformly on D’ (which we may suppose is simply connected).
By Hurwitz’ theorem (Titchmarsh, 1939) the limit, which we denote by
exp(Bp), has no zeros interior to D (it cannot be zero everywhere since
exp(Bpg) is never less than 1 for positive real z). Consequently its logarithm,
fip, is analytic in the interior of D and bounded on D’. The uniform con-
vergence of exp(fp,) on D’ guarantees that the p, also converge uniformly.
The conditions given above in Section II.E.6, under which one can demon-
strate the existence of a thermodynamic limit for p (with z real and positive)
also suffice to insure (4A.3)—again with the exception of bosons lacking a
superstable potential. Thus for a classical gas the bound (2E.4) implies

|Eq] < exp{|z| V, efB}. (4A.5)

For quantum gases see Ruelle (1963b). The corresponding bounds for lattice
gases (classical or quantum) are easily established under the conditions
(Section II.B, C) for which one can show that a thermodynamic limit exists.
Hence the question of interest in applications of Theorem 4.1 is the location
of the zeros of =,

The importance of this theorem is that it shows that a phase transition in
the sense of a non-analytic dependence of p on z for physical values of z can
only occur at points on the positive z axis which are accumulation points of
the zeros of 5, as 2 — co0. In regions free of zeros p will be analytic, and one
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may freely interchange derivatives with respect to z and the limit Q2 — oo.
Yang and Lee (1952) have shown how a first-order phase transition with the
usual properties—p continuous but dp/dz discontinuous—can arise if the
zeros “‘pinch” the z axis at only one point or at an isolated series of points.
Of course, it is not inconceivable that for certain systems every point of the
positive z axis will be an accumulation point of zeros, in which case Theorem
4.1 gives no useful information,} and thus it is of interest that for a number
of systems one can show that there are regions in the complex z plane which
remain free of zeros as Q — oco. We have already considered, in Section III,
certain classical lattice and continuum systems for which p,, is an analytic
function for z in a sufficiently small circle centered at the origin, as a con-
sequence of which Z, must, 0bV1ously, be free of zeros in this same circle.
Of course, for these systems Theorem 4.1 is not needed since the analyticity
of p can be established directly. There are other systems, however, most
notably Ising and Heisenberg ferromagnets, in which a direct study of the
zeros yields relatively large zero-free regions, and for which Theorem 4.1
is quite useful.

B. The Lee and Yang theorem for Ising ferromagnets

For our present purposes it is convenient to write the Hamiltonian of the
Ising magnet with pair interactions in the form

-#= "Z Jijo-io-j—ZHi(o-i——l) (4B.1)
i<j i

with i = 1,2, ... V. This differs from (2B.2) in an unimportant additive term
3;H;. The partition function Z, (2B.1), (we omit the subscript Q) is easily
shown to be a multinomial in the quantities z; defined by

z; = exp (—2B8H)), (4B.2)
with the symmetry property
Z(z1,20...2p) = 2125 . Zp Z(z. Y, 2, oz 7). (4B.3)

The result (4B.3), an example of “spin reversal”’ symmetry, can be obtained
by replacing each g; with —o; in (2B.1). If all the H; are equal to a single field
H, equivalently all z; = z, Z is a polynomial of order V in the “activity” z.}

T A violation of condition (iii) of the theorem does not imply, by itself, that in the thermo-
dynamic limit p is not analytic.

1 Note that this z=exp(—28H) is proportional to but not equal to the activity z=exp(Bu)
usually employed for a lattice gas (as in Section III.C). Both usages seem firmly embedded
in the literature (though Lebowitz and Penrose, 1968, use { for the former) and we have
decided to follow the usual practice, while inserting this note of warning to the unwary
reader,
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It has the following rather remarkable property:

THEOREM 4.2 (Lee and Yang). () Provided all the interactions J; satisfy

Jij>0 (4B.4)
and provided
lz;l > 1 (4B.5)
for all i, then Z = 0 implies that
1zl = 1z5] = ... = |zp| = 1. (4B.6)
(b) Provided the interactions J;; satisfy
Ji;j =0 (4B.7)

and provided all the z; are equal to z, Z = 0 implies |z| = 1.

For the proof of this theorem, see the original paper by Lee and Yang
(1952) or RSM, p. 108. Positive J;; means that an arrangement of spins
parallel to each other (all o; = +1 or all 6; = —1) is energetically favoured
and hence such interactions are termed ‘“‘ferromagnetic”’. In lattice gas
language this corresponds to a negative pair potential (apart from the infinite
repulsion for two particles in the same cell). In view of the symmetry (4B.3),
the condition (4B.5) can be replaced by

- 0< |zl <1 (4B.8)

for all i without altering the conclusion. This remark along with the
observation that Z does not vanish with all z; = 0 serves to establish part (b)
of the theorem on the basis of part (a), with the replacement of (4B.4) by
(4B.7) justified on the ground that the coefficients of the polynomial Z(z) are
continuous functions of the J;;.

Note that Theorem 4.2 makes no reference to sites lying on a regular lattice
and translational symmetry for J;;. When these last two conditions are
satisfied, however, and when the J;; > 0 decrease sufficiently rapidly at large
distances, the procedures of Section II.B show the existence of a thermo-
dynamic limit for p (equivalently /) for z > 0, and then Theorem 4.1 implies
that these functions are analytic in z or H except possibly atf

z=exp(—28H)=1 or H =0,

which is thus the only place where a phase transition can occur at a fixed
(emperature.

| Seo second footnote on p.52,
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C. Extensions of the Lee and Yang theorem

1. Quantum spin systems

Recently Asano (1970a, b) has introduced a new technique for studying zeros
which he and Suzuki and Fisher (1971) have used to extend Theorem 4.2 to
quantum spin systems. We suppose that the Hamiltonian for a finite set of
sites 1, 2, ... V is

— x y z
H = — Z JU O'xiO'xj + JU O'yiO'yJ- + JU O'ziO'zj

i<j
— 2. (H{ oy + H 0y) — H) , m; 0 (“C.1)
with J;;%, J; 7, Ji 5, H, H?, and m, real constants.
THEOREM 4.3 (Suzuki and Fisiler). If for all i and j
m; =0, Jif 2|, Jiff = i, (4C.2)

the zeros of the partition function
Z = Tr[exp (— B#)] (4C.3)

as a function of H with B > 0 all lie on the imaginary H axis.

Note that Theorem 4.2.(b) is a special case of Theorem 4.3 in the case
Jij = J; =0, since H imaginary implies—see (4B.2)—that |z| =1. The
extension of 4.2(a) to quantum spin systems has not yet been achieved.

2. Ising and quantum spin systems with arbitrary spin

Theorems 4.2(b) and 4.3 can be extended to the case of Ising and quantum
models with spin greater than 1/2 (see Section I1.D.1) by the fairly simple
device of considering the higher spin “atom’ to be composed of a number of
spin 1/2 atoms coupled together with a suitable ferromagnetic interaction.
Griffiths (1969b) employed this device for Ising spin systems and Suzuki and
Fisher (1971) have used it for the quantum case. Once the results are in hand
for all finite values of spin, they can easily be extended to the “infinite spin”
or “classical limit” (see Section II.D.2) as pointed out by Harris (1970). The
Hamiltonians to which these theorems apply are obtained by replacing o
with s or, in the classical limit, with ¢ in (4B.1) and (4C.1); the conditions
(4B.7) and (4C.2) remain unchanged. The claim by Kunz (1970) that the
conditions (4C.2) on the J;; can be relaxed in the classical limit seems to be
incorrect.

3. Regions other than the unit circle
The arguments discussed this far have shown that zeros lie on the unit circle
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in the complex z plane or, equivalently, on the imaginary axis in the complex
H plane. Recently Ruelle (1971) has presented an argument which extends
Asano’s method so as to permit statements about regions other than the unit
circle. We refer the reader to Ruelle’s paper for a detailed statement and proof
of his results. In the case of an Ising model with pair interactions of finite
range, he is able to show that the zero-free region includes the entire positive z
axis at sufficiently high temperatures whether the J;; are positive or negative.
This result was obtained earlier by use of integral equations (see Section III.C
above), but the argument using the zeros is more direct (in the situations where
it is applicable) and also appears to yield a better estimate of the minimum
temperature for which analyticity persists for all z > 0.

4. Dimer systems

Heilmann and Lieb (1970) and Gruber and Kunz (1971 ; see also Kunz, 1970)
have shown that a result analogous to Theorem 4.2 holds for a system of
monomers and dimers. Consider a graph consisting of V(V — 1)/2 edges
connecting vertices labelled 1, 2, ... V. Associated with the edge between i and
j is a weight w;; and with the vertex i a weight x;. A dimer-monomer covering
corresponds to a subset of edges no two of which share a vertex in common.
Each edge in this subset and its two vertices are said to be covered by a dimer
and the vertices not adjacent to any of the covered edges are considered to be
covered by monomers. A weight equal to the product of the w;; for the edges
covered by dimers times the product of the x; for vertices covered by mono-
mers is associated with each covering. The partition function P is the sum of
all weights associated with all possible coverings. Heilman and Lieb have
shown that if the w;; are all real and non-negative, P cannot be zero if
Re(x;) > 0 for all i or Re(x;) <O for all i (Re = real part), and thus if
x, = x for all i, the zeros of P(x) occur on the imaginary x axis.

This result can be used to show the absence of a phase transition for real
x 2 0 in the monomer—dimer problem in a suitable thermodynamic limit
cxcept (possibly) at x = 0, which corresponds to a maximum density of
dimers. (In a typical application one sets all w;; equal to zero unless, say, i and
f are adjacent sites on a regular lattice.) For additional results and a discussion
of the relationship of this work to Theorem 4.2 and 4.3 we refer the reader to
(he original papers.

D. Other applications of the Lee and Yang theorem

|. Analyticity in temperature

I'heorem 4.1, while worded in terms of the variable z, can easily be extended
(o other thermodynamic variables, for example the inverse temperature f.
See, for example, Fisher (1965a) and Jones (1966). One must show that
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(Eo)'¥2 is an analytic function and suitably bounded in some region in the
complex B plane (this is relatively easy for lattice gases; for the continuum
case see Jones, 1966). Unfortunately, very little is known rigorously about the
location of zeros in the complex B plane and hence this approach has not
been very fruitful thus far in establishing regions of analyticity for complex S.

An alternative approach which makes use of information about analyticity
in z is based on the following result.

THEOREM 4.4 (Lebowitz and Penrose). Let C be a closed disk in the complex z
plane and K the closure of a simply connected region having C in its interior
(Fig. 5). Let I be a closed interval of the real B axis and S a closed semicircle in
the upper half of the complex B plane having I as its diameter. Let the function
F(B, 2) have the following properties:

(1) F is analytic in both variables for all z in C and B in S (that is, in a
neighbourhood of the closed set S x C).

(ii) For any fixed B in I, F is an analytic function of z in K.
(iii) There is a constant L such that

|F(B,2)] < L (4D.1)

forall BinI and z in K. Then F(B, 2) is an analytic function in both variables for
all B in I and z in the interior K' of K (that is, in some neighbourhood of the
set I x K.

Fi1G. 5. Regions in the complex z and B planes, to illustrate Theorem 4.4.

The proof is given by Lebowitz and Penrose (1968), who show that the
theorem can be applied to an Ising ferromagnet, interactions satisfying
(4B.7), as follows. By means of the lattice version of the Kirkwood-Salzburg
equations or the equations of Gallavotti and Miracle-Sole (Section III), one
may establish that the pressure is analytic in both B and z for f real and
positive and z in a sufficiently small (depending on B) circle centered at the
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origin. This circle becomes C in Theorem 4.4. Analyticity in f implies there is
some neighbourhood of the real f§ axis where p is analytic, and we choose the
length of I sufficiently small so that the corresponding semicircle S lies inside
this neighbourhood. By Theorems 4.2 and 4.1 we know that exp (fp) for real
B > 0 is analytic in the circle K defined by |z| < r for some r < 1. The exist-
ence of the bound (4D.1) follows at once from the analogous bound (4A.3)
for finite systems. Thus the theorem implies that exp (8p), and consequently
the pressure, is analytic in both f and z for B real and |z| < r or, since r was
any number less than 1, for |z| < 1. Thus starting from the fact that p is
analytic in f for small values of z, we are able to show analyticity in § (for f
real) throughout the region |z| < 1 where the Lee-Yang theorem guarantees
analyticity in z. The result is summarized in Fig. 6 which shows
(schematically) the region in the real H, real T plane where the pressure
(or free energy) of an Ising ferromagnet is an analytic function of both
variables.
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I'iG. 6. Region in the H, T plane for an Ising ferromagnet where analyticity in both vari-
ubles may be proved using the equations of Gallavotti and Miracle-Sole (double cross
hatched), and the additional region (single cross hatched) in which analyticity may be
established with the aid of Theorems 4.2 and 4.4.

‘Theorem 4.4 can be used in a similar manner to extend the region where the
pressure (or free energy) is known to be an analytic function of variables
which enter the potential, for example the J;; for different values of r; — r;.
It can also be applied to the quantum lattice systems described in Theorem
“LBT-

| See Chapter 3 by Ginibre in this volume for a discussion of results showing analyticity
for small z in analogy with the Kirkwood-Salsburg equations.
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2. Baker’s inequalities

Baker (1967, 1968a, 1970) has shown how a knowledge of the fact that the
zeros of Z for the Ising ferromagnet lie on the circle |z] =1 can be used in
connection with Padé approximants to provide upper and lower bounds on
various thermodynamic functions (we refer the reader to his papers for
details). In addition (Baker 1968b, 1970) this property of the zeros leads to
certain inequalities for the magnetisation and its derivatives with respect to
magnetic field.
The zeros of Z as a function of the variable

7= (1 — 2)/(1 + z) = tanh SH (4D.2)

fall on the imaginary 7 axis at the locations +iA; (4; real). The magnetization
per site

M=V"1Y{0s;) (4D.3)
i=1
can be written in the formft
14 2P
=@y : : 13 = (4D.4

If we let x = 72, it is evident from (4D.4) that the successive derivatives u™
of u(x) alternate in sign:

a(x) = (=1)" 4™ (x)/n! > 0, (4D.5)
for x > 0, and one can also show that

Hn 4 2(X) (%) Z [y 1(0)]? (4D.6)

along with other analogous inequalities (Baker, 1968b, 1970).

The results (4D.5) and (4D.6), derived for finite systems, are also valid in
the thermodynamic limit since M is essentially the derivative of the free energy
(or pressure) with respect'to H, and for x = 12 > 0 the interchange of deriva-
tives and thermodynamic limit is justified by Theorem 4.1.1 Baker (1968b,
1971) has used (4D.6) to obtain certain inequalities for critical point
exponents.

+ Our treatment here differs slightly from that of Baker (1968b).
I Alternatively, one may go directly to the thermodynamic limit in (4D.4), replacing the sum
by the appropriate Stieltjes integral.
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V. Peierls Arguments for the Existence of a Phase Transition
A. Ising model on a square lattice

1. Introduction

In Sections III and IV we have discussed techniques for establishing the
absence of phase transitions by showing that the pressure or free energy is an
analytic function of suitable thermodynamic variables in the thermodynamic
limit. The converse problem, demonstrating the existence of non-analytic
behaviour, must be attacked by quite different methods. One of the more
fruitful approaches for lattice systems (apart from an explicit solution to the
statistical problem, which is only possible in a relatively small number of cases)
goes back to the work of Peierls (1936). Some defects in the original argument
were remedied by Griffiths (1964b) and an equivalent argument was developed
independently by Dobrushin (1965a, b).

The essential principles of this argument are most easily grasped by con-
sidering the case originally discussed by Peierls, an Ising ferromagnet on a
square lattice with Hamiltonian

=—-J)Y o;06;,—H) o, (5A.1)

<> i

where the first sum is over pairs of sites which are nearest neighbours of each
other, each pair counted once, and J is positive (ferromagnetic). In lattice-
gas language this corresponds to a negative (“‘attractive’) potential between
particles in neighbouring cells. Even though for this model a number of
characteristics of the phase transition (at H = 0) are known through explicit
calculations (Onsager, 1944; Yang, 1952), an application of the Peierls
argument serves to illustrate certain physical features of the transition as well
as providing arguments which can be generalised to models (e.g., three-
dimensional lattices) where no explicit solutions are available.

The free energy f,, for a finite set of sites 2 (see (2B.1); #,, is obtained by
restricting sums in (5A.1) to i and j in Q) is a concave function of H (Section
11.B.4) and is also symmetric,

Jfo(H) = fo(—H), (5A.2)

at a fixed temperature, as one may easily verify by replacing each o; with
—a, in (2B.1). Both properties are inherited by the thermodynamic limit f
and hence its derivative,

M = —ofJoH, (5A.3)

the magnetisation per site, is monotone increasing (non-decreasing) in H and
antisymmetric,
M(—H) = —M(H) (5A.49)
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The concavity of f in H means that the derivative (5A.3) is well defined
except that it may be discontinuous, at most at a countable number of
points. (The Lee-Yang theorem, Section IV.B, shows that M is analytic
except possibly at H = 0, but we shall not assume this result in carrying out
the Peierls proof, since the latter is often applied to systems to which the
Lee-Yang theorem does not apply.) In particular the limit for H > 0

M, = lim M(H) (5A.5)

H-0+

always exists and is non-negative. If the system possesses a ‘‘spontaneous
magnetisation” M, > 0, it is clear from (5A.4) that M(H) is discontinuous,
f (H) has a “kink” (see Fig. 7), and the system undergoes a ‘“phase transition™
(see Section III.A) at H = 0.}

M
Af

T Y

(a) (b)

FiG. 7. The free energy (a) and magnetisation (b) as a function of H when there is a phase
transition or spontaneous magnetisation at H=0.

In lattice-gas language the phase transition consists in a discontinuous
change in density (closely related to the discontinuity in M) at a value of
the chemical potential i which corresponds to H = 0.

2. Proof

The proof that the model with Hamiltonian (5A.1) has a phase transition at
H = 0 for sufficiently small temperatures is carried out in two steps. (i) We
show that with a particular type of boundary condition the magnetisation per
lattice site M, (the caret ‘indicates the special boundary conditions) for a
finite system £,

M.Q = —6fQ/5H = V.Q-_l Z 2 (5A.6)
ief2

1 Equation (5A.5) is not the only possible definition of ‘‘spontaneous magnetisation’’ (see
Griffiths, 1966), but has the advantage that it depends only on the thermodynamic limit f
and is thus reasonably independent of boundary conditions, etc.
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has at H = 0 a lower bound
Mga>0>0 | (5A.7)

with o independent of Q. (ii) We show that « is also a lower bound to M,
(5A.5).

The finite system Q for part (i) of the argument is a square and the
boundary condition is that all 6; = +1 for i on the outer boundary of the
square (Fig. 8). These boundary spins may be included as part of the
system, or the system may be thought to consist of only the unconstrained
spins inside the boundary with, however, the interaction between these spins
and the (fixed) boundary spins retained in the Hamiltonian. (The latter
interpretation is the natural one in lattice-gas language because the particles,
in cells i with o; = —1, are confined to a box with ‘““vacuum’’ on the outside.)

For a given configuration, lines are drawn between pairs of nearest-
neighbour sites if o is +1 on one site and — 1 on the other. These form closed
polygons or “borders’ (Fig. 8). The ambiguity which arises when two poly-
gons touch at a corner is to be resolved by cutting the corners adjacent to
the sites with ¢ = —1. A border of length (perimeter) b consists of b line
segments and encloses at most (b/4)? sites of the lattice.

ofcJcjojc)o
o[- - - e
® - -[]-|@
®-- - -|®
@ -1+ + + (»
OOOOOG

I'a. 8. A particular configuration on a 6 X 6 square to illustrate the Peierls argument. The
boundary spins (inside circles) must be 41 for all configurations.

Suppose that there are v(b) possible ways of drawing a border of length b
on Q. Let X, be 1 if the jth border of length b is present in a configuration
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and O otherwise. For any configuration satisfying the boundary conditions

mentioned earlier the number of sites V_ where g; = —1 is bounded by
v(b)
Vo< Y (44 ) X9, (5A.8)
b=4,6... j=1

and the thermal averages satisfy the same inequality

v(b) .
KV_>< Z (b/4)? Z (X, (5A.9)
b=4,6 i=1
Since
]\7[Q =1-2<V_)Vq, (5A.10)

we need only show that the right side of (5A.9) does not exceed (1— a)V,,/2
in order to have M, > a.

An upper bound on <(X,) for a particular border of length b can be
constructed using the definition

(X, = X exp(—BH#)[E exp(— ) (5A.11)

with the numerator a sum over all configurations in which the border
appears and the denominator an unrestricted sum over all configurations
satisfying the boundary condition. With each configuration C in which
the border occurs we associate a configuration C* obtained by reversing
(6; > —o0;) all the spins inside the border. Their energies are related by
(note that H = 0)

H(C*) = #(C) — 2bJ. (5A.12)

An upper bound to (5A.11) is obtained by including in the denominator
only configurations C* generated from configurations in the numerator by
the process just mentioned (note that each C leads to a different C*):

(X9 < exp(—2BbJ) (5A.13)

An upper bound for v(d) is obtained by noting that we can have at most
V,, borders of a given ““type’’; two borders are of the same type if one can
be obtained from the other by rigid translation. A border of a given type
may be laid out sequentially by attaching one line at a time to those already
present. At each stage of this process (the position of the first line is
arbitrary) there are at most 3 possibilities and hence at most 3*~1 types
border. Thus we have

() < V3t~ 1 (5A.14)
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Inserting (5A.13) and (5A.14) in (5A.9), we obtain

V.SV < (1/48) b=426 b(3 exp(—2BJ))". (5A.15)

It is evident that simply by choosing f sufficiently large (the temperature
sufficiently low), the right side of (5A.15) may be made as small as desired,
in particular less than 1/2, independently of Q.

Part (i) of the argument proceeds by noting that since f,, is a concave
function of H and M, is monotone increasing, (5A.7) implies that

Jo(H) < fo(0) — oH (5A.16)

for H > 0. But as the size of the square Q increases to infinity, f,(H)
converges to the same limit f(H) discussed in §1 above, since the special
boundary conditions contribute only a “surface’ term to the free energy
(Section II.B.2). Thus f(H) also satisfies (5A.16) for H > 0, which means
that M, [see (5A.3) and (5A.5)] cannot be less than «. This completes the
proof.

The Peierls argument, in addition to showing that the free energy (or
pressure) has a discontinuous first derivative, establishes the existence of a
phase transition (Section III.A) also in the sense that some of the correla-
tion functions, in particular the {o;), are sensitive to boundary conditions
even in the limit of an infinite system. Thus at H = 0 the “free” boundaries
(used in Section 1 above) yield {o;>o = 0, while the special boundary
conditions of Section 2 yield {o;)>, = o > 0 at sufficiently low temperatures,
and if we let all the boundary spins be —1 instead of +1, {c;>, would be
less than —a.

3. Fixed magnetisation or canonical ensemble

Some discussions of the Peierls argument (e.g., RSM, p. 113) make use of
the fixed-magnetisation or (in lattice-gas language) canonical ensemble,
which gives an alternative point of view which is sometimes useful.

For a finite system Q with V, sites, the probability IT,, that the magnetisa-
tion will have the value M (in the ensemble where M can vary) is pro-
portional to

Y. 2, Pryexp(—p#) = exp(L— BV, ag(M)] (5A.17)
g1 oV
where P, is one if X, 0, = MV, and zero otherwise, and a,(M) is the free
cnergy at fixed magnetisation (closely related to the Helmholtz free energy
in the lattice gas).

The methods of Section II.LE can be used to show that in the thermo-
dynamic limit ao(Mg) tends to a(M) if M, tends to M, independently of
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(reasonable) boundary conditions. The limit a(M) is convex, symmetric,
and the Legendre transform (Section IL.F) of f(H) at fixed S:

a(M) = sup[ f(H) — MH]. (5A.18)

H
The Peierls argument shows that at low temperatures f(H) has a discon-
tinuous first derivative at H = 0. The corresponding a(M) is constant for

~-M,< M < M, Fig. 9, and for M > M, a(M) — a(0) is strictly positive.

a

F1c. 9. The function a(M) when there is a phase transition (spontaneous magnetisation
M,) at H=0.

Due to the factor V,, in the exponent in (5A.17), the mere fact that a,
converges to a(M) does not tell one much about the probability distribution
(for finite Q) II, in the interval — M < M < M,. This distribution is in fact
sensitive to the boundary conditions, as is clear from the Peierls argument.
However for any M, > M, we may be sure that for sufficiently large Q,
ao(M,) — ap(0) has a positive lower bound independent of Q, and conse-
quently the probability of finding M > M, > M, compared to the probability
of finding —M, < M < M, decreases exponentially rapidly with V,, as
Q — 0. (A formal proof of this assertion has been given by Dobrushin
(1967) and Griffiths (1966). The latter points out that the same result holds
for quantum spin systems in cases where the magnetisation operator
commutes with the Hamiltonian.)

4. Work of Minlos and Sinai

The canonical (fixed-magnetisation) ensemble has been used by Minlos
and Sinai (1967a, b, 1968) in order to obtain a more detailed picture of the
separated phases. The density of the lattice gas is fixed somewhere in the
range of discontinuity (equivalently, M has a fixed value somewhere be-
tween —M, and M), and the most likely configurations are investigated.
They show that with the usual “hard wall”’ boundary conditions (o; = +1
on boundary) the particles (6; = —1) of the lattice gas tend to cluster inside
one large border whose shape approximates a square at sufficiently low
temperatures. Inside this “liquid’”’ phase the system is ‘“homogeneous” in
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the sense that the probability distribution of small borders (surrounding
“bubbles’ of g; = +1) is largely independent of position, and the same is
true inside the “vapour” phase. We refer the reader to the original papers
(a summary of results is found in Minlos and Sinai, 1967a) for the precise
conditions under which these assertions can be proved.

As one would expect, the borders of the Peierls argument play a funda-
mental role in the arguments of Minlos and Sinai. They have developed
equations for border correlation functions (the probability of finding a
certain finite set of borders present) which are analogous to the Kirkwood—
Salzburg equations (see Section III.B.2). In addition to the results already
mentioned, such equations may be used to show that at sufficiently low
temperatures the susceptibility of the Ising model, 0M/0H, or the cor-
responding compressibility of the lattice gas, is finite as H — 0, that is as

one approaches the phase transition from one of the pure phases (Minlos
and Sinai, 1967c).

B. Other classical ferromagnets
1. Three- (and higher) dimensional lattices

The extension of the Peierls argument to an Ising ferromagnet with nearest-
neighbour interactions, (5A.1), on a simple cubic lattice is quite straight-
forward. Square surfaces of unit area (assuming the lattice constant is 1)
are placed midway between nearest-neighbour pairs of sites i and j, per-
pendicular to r; — r;, if 6;0; = —1. These surfaces form closed polyhedra
if one requires that all o; = +1 for sites on the boundary of a large cube.
The number of sites where g; = —1 is bounded by (5A.8) if (b/4)? is replaced
by (b/6)*/® and X, is 1 if the jth polyhedron of surface area b occurs in
a configuration and 0 otherwise. The bound (5A.13) for {(X,’> is obtained
by the same argument as with the square lattice. Likewise the estimate
(5A.14) for v(b) remains unchanged, though this is not as obvious in three
dimensions as in two. [A connected polyhedron can be built up by adding
one surface at a time to one of the free edges already present. As one can
adopt a general convention which will always specify the edge at which to
add the next surface, there are at most three possible positions for each
additional surface. See Van der Waerden (1941).] Consequently (5A.15) is
valid in the three-dimensional case, with very minor alterations. And the

argument can, of course, be extended to hypercubical (and, presumably,
other) lattices of dimension d > 3.

2. Further-neighbour interactions

Various extensions of the Peierls argument have been suggested for situations
where the interactions extend beyond nearest neighbours. Thus Ginibre ef al.
(1966; see also RSM, p. 114) have shown that further-neighbour pair inter-
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actions of either sign may be present provided they are small, in a suitable
sense, compared to the nearest-neighbour interactions which must be ferro-
magnetic (J;; > 0; the corresponding lattice-gas potential is negative). Their
argument uses borders drawn between nearest-neighbour pairs of opposite
spins, and the same transformation C — C* discussed in Section A.2 above.
This transformation leads to a lower energy, the change being proportional
to b, provided the further-neighbour interactions are not too large.
Dobrushin (1967) has published somewhat different conditions under which
the existence of a phase transition can be proved; again the ferromagnetic
interactions must, in a suitable sense, outweigh those of opposite sign.
Berezin and Sinai (1967) have developed a proof for the case where all
interactions are ferromagnetic but fall to zero beyond a certain finite distance.
There is no limit on the magnitude of further-neighbour as compared to
nearest-neighbour interactions. (In this situation a somewhat stronger
result can be obtained with the GKS inequalities—see Section VI.B.1.)

3. Ising ferromagnets with spin greater than one-half

Lebowitz and Gallavotti (1971) have shown the existence of phase tran-
sitions in two Ising models of spin one with Hamiltonians

H = —J Z sziszj (1_ Szi szj) + .uzsziz '—stzi (SB'l)
¢7), i i
and
H=—J Z sziszj + .uzsziz _stzi’ (SB'2)
iy i i

for sufficiently low temperatures (depending on the value of u), using a
suitable modification of the Peierls argument. The reader should see their
paper for the details.

C. Antiferromagnets and lattice gases with hard cores

1. Antiferromagnets

The phase transitions discussed thus far are all of the ‘““ferromagnetic” type:
the o; all tend to have the same value at a sufficiently low temperature and
the magnetisation M, (5A.3), is a discontinuous function of field H (in
lattice gas language, the density is discontinuous as a function of chemical
potential). A different type of phase transition, “antiferromagnetic’, occurs
if J in (5A.1) is negative.

We again consider the case of a square lattice. It may be broken up into two
sublattices 4 and B (Fig. 10) with the property that all the nearest neighbours
of a site on sublattice 4 belong to sublattice B and vice versa. It is convenient
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to modify the Hamiltonian (5A.1) by adding a term —n¥':

H = lJlZaiaj—HZai—n'I/,‘ (5C.1)
iy i
where
¥ = Z o; — Z oy, (5C.2)
icd icB
or its average
l// = Vn_l <T>Q (SC-3)

is called the ‘“‘sublattice magnetisation’ (actually the difference between the
magnetisations on the two sublattices).

c e O e
® O @ O
C e O e

® O e O

Fic. 10. Sublattices A (filled circles) and B (open circles) for a square lattice.

In discussions of the antiferromagnetic transition # plays the role of H and
i/ the role of M in the ferromagnetic case. Our aim will be to show that y/ is a
discontinuous function of # at 1 = 0 in the thermodynamic limit and at
sufficiently low temperatures. In this limit { is an antisymmetric, non-
decreasing function of #, so it suffices to show that

Y, = lim y(n) > 0, (5C.4)

n—-+0+

which is certainly the case if we can use special boundary conditions and
obtain a lower bound « > 0 to { for finite Q (see the analogous discussion for
(he ferromagnet, Section A.2).

The existence of a phase transition, in the sense just described, follows
immediately from the arguments in Section A.2 when H = 0, upon noting
that reversing the sign of all spins on the B sublattice (¢; - —g;) carries Y into
M and reverses the sign of J, thus reproducing (5A.1) with # in the place of H.
Dobrushin (1968c; see also Ginibre, 1970a) has shown how the Peierls
argument may be extended to the case of the antiferromagnet with H # 0.
On the boundary of a square let 6, = + 1if i is on the A4 sublattice and — 1 if
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i is on the B sublattice. In the interior, borders are drawn between pairs of
adjacent sites i and j if 0; = 0.

+ - 4+ - + = + - + = o+ =
- 4+ |+ - + |+ - + === +
+|+ = =] -]= + - + - + =
- + |+ - + |+ - + - + - +
— .
+l+|+ - + = +++ - + =
- + - 4+ - o+ -+ - + - +
(@) (b)

Fic. 11. (a) A configuration C. (b) The configuration C* in which the large border in (a)
has been eliminated.

The probability <X ,”) of occurrence of the jth border of length b when
n = 0 may be estimated as follows (see Fig. 11). Let C be a configuration in
which this border occurs and o, and o,* the values of the spin at site k in C
and a configuration C* defined as follows. If k is a site in the interior of the
square, let k be the site just below it. For k outside the border in question,
o,* = oy, while if both k and k are inside the border, o,* = o;. However, for k
inside the border and k outside the border, o,* = —o;. The effect of this
transformation (see Fig. 11, where it is applied to the large border) is to
eliminate this border entirely while shifting any borders lying inside it by one
step in the vertical direction. The energies are related by

H(C*) = H(C) —2b|J]| + A, (5C.4)

where A is the change in the energy due to the term involving H in (5C.1).
If the border has a width <b/4, one can show that

A < b |H|/2, (5C.5)

and consequently, as long as

\

[H| < 4|J], (5C.6)

C* will have an energy less than C by an amount proportional to the length
of the border, which leads to a bound analogous to (5A.13). For borders of
width >b/4 one obtains C* with a transformation in which k is the site just
to the left of k, in order to achieve the same result.
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The rest of the Peierls argument for this case is identical with that for the
ferromagnet, Section A.2, and shows that . is greater than zero at a
sufficiently low temperature provided (5C.6) is satisfied. The maximum
temperature at which the argument guarantees the existence of a phase
transition decreases linearly with |H| for fixed J, reaching zero at |H| = 4J.
[Numerical studies (Bienenstock, 1966) indicate a somewhat different
dependence on |H| of the maximum temperature for a phase transition, with,
however, this temperature also going to zero at |H| = 4J.]

Of course, similar arguments may be carried out for three dimensional
lattices, such as the simple cubic, which can be decomposed in a similar way
into two sublattices with the nearest neighbours of a site on one sublattice
belonging to the other. ’

2. Lattice gas of hard squares

In a hard-square lattice gas, the presence of an atom in a cell results in a
potential which excludes atoms not only from that cell itself but also from the
four nearest-neighbour cells on a square lattice. (Clearly there are analogous
models for certain other lattices, such as simple cubic.) Dobrushin (1968c;
see also Ginibre, 1970a) has shown that if the chemical potential is sufficiently
large (corresponding to a high density of particles), a phase transition of the
““antiferromagnetic” type occurs, which is to say the boundary conditions
may be chosen to make the atoms lie predominantly in cells of the 4 sub-
lattice (or B sublattice with alternative boundary conditions). Additional
finite interactions between the particles are permitted; these merely alter the
estimate of how large the chemical potential must be for a transition to exist.
The proof is similar to that for antiferromagnets discussed above.

It is to be noted that both for hard squares and for the antiferromagnets
previously discussed, the phase transition does not (in lattice-gas language)
involve any discontinuity of the density as a function of chemical potential,
or at least such discontinuities have not been proved.

). Mixtures of lattice gases with hard cores

Lebowitz and Gallavotti (1971) have investigated a lattice gas in which two
types of particle (as well as empty cells) are permitted. Particles of type a do
not interact among themselves except for the usual condition that no more
than one can occupy a single cell, and the same is true of particles of type b.
However, a particle of type a in a cell i excludes particles of type b from that
cell and all cells whose centres fall within some sphere of radius r, surrounding
the center of cell i. (In other versions of the model the sphere can be replaced
by certain other convex sets.) A phase transition takes place in the sense that
the lattice tends to be occupied predominantly by particles of type a or of
lype b depending on boundary conditions, provided the chemical potentials
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of the two species are chosen appropriately. This system is of interest both as a
model for phase separation in binary mixtures and as a first step towards
extending arguments of the Peierls type to continuum systems.

D. Quantum lattice systems

1. Introduction

In the notation of Section II.C, quantum lattice systems are distinguished by
the presence of “‘transverse’” interactions (in magnetic terminology) in the
Hamiltonian involving the o,; or o,;, while the classical Ising model has, by
convention, only “longitudinal’ interactions involving the o,. Robinson
(1969) and Ginibre (1969b) have shown how the Peierls argument can be
modified to prove the existence of phase transitions in certain systems where
the classical (longitudinal) interactions by themselves lead to a phase transi-
tion, and the transverse interactions represent a small perturbation. In
Section 2 we give an introduction to Ginibre’s argument for the square lattice
with nearest-neighbour interactions.

2. Square lattice with nearest—neighbour interactions
The Hamiltonian 4 is the sum of two terms:

Ho=—J) 06,0, (5D.1)
i
—(0/2) Z ( Oxi x] yt. yj) (SDZ)

)

Note that (5D.1) is simply (5A.1) with H = 0. We assume J > 0 (ferro-
magnetic), while a may have either sign. The strategy, as in the classical case,
is to obtain an upper bound to

V_)> = Tr[V_exp (—BH#)]/Tr [exp (—B#)] = W|Z, (5D.3)
with
Vo=1%13 (1 -0, (5D.4)

ie

when we consider a finite square Q with all o,; = +1 for sites on the
boundary.
An essential tool in Ginibre’s argument is the Trotter (1959) formula

exp [—B(# o + A)] = lim {exp (—B#o/n) (1 — A’ /n)}".  (5D.5)

n—w
By choosing a finite » we obtain an approximation to W:

W, = Tc [V- {exp (= B#oln) (1 — B [m)}"]. (5D.6)
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The trace is conveniently evaluated using states which are just the classical
configurations of the system (thus eigenstates of #,), which we denote by D.
Upon inserting a complete set of states between each factor in the product
on the right side of (5D.6), we obtain

W,= % <DMIV-| D)) <{D(1)|exp (—Bs#o/n) |D(1))

10!
x KD(D) |(A = BA’[n)| D(2)) <D(2) lexp (—B#o[n)| D(2)}... (5D.7)
x {D(n) |(1 — BA’[m)| D(1)),

where the sum is over all sequences of configurations D(1), D(2), ... D(n)
satisfying the boundary conditions.

The advantage of (5D.7) and the analogous approximation for Z is that
the effects of the two non-commuting operators #, and " are conveniently
separated. Furthermore, since the D(m) are classical configurations, it is
possible to introduce borders separating sites with o, = +1 from those with
o, = —1, and 5, depends only on the total length of these borders. How-
ever, it is no longer possible to focus attention on a single border. One must
instead consider the aggregate of borders obtained from it or connected with
it by successive applications of the operator 2", which can alter a configura-
tion by interchanging the values +1 and —1 for o, on nearest-neighbour
sites. As a result, the probability estimates and combinatorial problems are
significantly more difficult than in the classical case. We refer the reader to
Ginibre’s paper for the details of the argument.

The end result is that one can establish that {V_) is less than (1 — a)V,/2
for some o > 0 provided |a|/J is sufficiently small and the temperature
sufficiently low. In the case of the square lattice it is necessary to assume
|a]/J < 2 x 1076, (This number could no doubt be increased by a refinement
of Ginibre’s combinatorial estimates.)

3. Other quantum models

In addition to the ferromagnet, Ginibre (1969b) has shown how (5D.5) may
be used to establish the existence of phase transitions in the antiferromagnet
[J <0 in (5D.1)] and hard-square lattice gas (Section C.2) and their
analogs in higher dimensions d > 2 on (hyper) cubic lattices. The transverse
{erm may contain interactions between.next-nearest neighbours in addition
10 the nearest neighbour interaction (5D.2); and for all three models one can
use in place of (5D.2) a “transverse field”

A = —(af2)) oy (5D.8)

In all cases the transverse interaction must be sufficiently small in comparison
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to the longitudinal or classical interaction. The precise conditions are

presented along with the appropriate combinatorial arguments in Ginibre’s
article.

V1. Correlation Inequalities

A. Griffiths—Kelly—Sherman (GKS) inequalities for Ising ferromagnets
1. Motivation

If in an Ising model with a finite set of sites Q and Hamiltonian
=_2Jij0'i°'j_HZo'i (6A.l)
i<j i

the J;; are all “ferromagnetic”,
Jij >0, (6A.2)

the spins tend to align parallel to one another since this lowers the energy.

Thus 6, = o,is more probable than 6, = — g;and the pair correlation function
(Section I1.H) should be non-negative:

(o0 = 0. (6A.3)

At zero temperature (and provided a sufficient number of the J;; are non-
zero) one expects perfect alignment, {g, 0;,) =1, while at finite temperatures
thermal fluctuations will lead to smaller values of {oy 6;). Since increasing

the J;; corresponds to decreasing the temperature (only the quotient J;;/kT
appears in the Boltzmann factor), one might expect that

0{oy 01p[0J;; = P[0, 0,0,0;) — o 01)o;0,7] = 0. (6A.4)

In other words, increasing the interaction between any pair of spins increases
the alignment not only of that pair, but acts indirectly to increase the align-
ment of all other pairs. Such a result is only plausible for ferromagnetic
interactions in which all the interactions ‘“‘cooperate’ to produce parallel

alignment. Counter-examples to (6A.3) and (6A.4) are easily constructed if
there is no restriction on the sign of the J;;.

2. Theorem of Kelly and Sherman

The results (6A.3) and (6A.4), first obtained by Griffiths (1967a), are special
cases of a general class of inequalities derived by Kelly and Sherman (1968)
which we shall call “GKS inequalities”. They are summarised in the following

theorem which makes use of the notation of Section I1.B.3, with A4, B, C, etc.
subsets of a finite set of lattice sites Q.
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THEOREM 6.1 (Kelly and Sherman). Given a Hamiltonian

==Y Jy04 | (6A.5)

A<

with ferromagnetic interactions, that is

J, =0 (6A.6)

for all A = Q, then
(@) <o) = Tr [opexp (—po#)]/Tr [exp (— )] = 0 (6A.7)
)] ﬂ_l 0{0p>[0J¢c = {op0c) — {op> o) = 0 (6A.8)

A proof is given in RSM, p. 120, as well as in the paper of Kelly and
Sherman (1968). We shall, however, exhibit a somewhat simpler proof due
to Ginibre (1969a) which requires some additional notation.

A configuration may be specified by giving the set of sites F in Q for which
o; = —1, and a sum over configurations is the same as a sum over all subsets
of Q, including the empty set & and Q itself. Each oy is a function of the
configuration F':

op(F) = (=1)*@°F) = o4(B) (6A.9)

where #(A) is the number of sites in A. Note that o4 is identically 1. It is
easy to show that

Tr[ O L (6A.10)
rlosl = 2, o) = 0 if B£O '

By the product BC of two subsets of Q we mean their symmetric difference,
the set of sites occurring either in B or in C but not in both. The subsets of
with this definition of product form a commutative group I' in which & is the
identity and each element is its own inverse: @B = B and B?> = . Since
0,2 =1 for any i, we see that

05(F) 0¢(F) = opc(F) (6A.11)
which combined with (6A.9) yields the result
05(C) a5(F) = o5(CF). (6A.12)

The proof of (6A.7) is obtained by expanding the exponential on the right
hand side of

Z o5y = T oa(P)ew [B;JA o-A(F)] (6A.13)
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in a power series, combining the different terms using (6A.11), and carrying
out the sum over F with the assistance of (6A.10). The result is a sum of non-
negative terms if (6A.6) is satisfied.

To prove (6A.8) we note that

W = Z*[{ogoc) — {op> {oc)]

- Sexp BT Tu0uP)| Zosc@ e |83 140,(G)|
G DIRICI N CEA T HERACY

=3, X [05c(6) — o5(F) 0c(G)] exp [ﬂgJA[aA(F) + oA(G)]]. (6A.14)

Let E = FG and D = BC or, equivalently, C = BD, F = EG. Using (6A.11)
and (6A.12) one obtains:
0p(F) 6c(G) = 05(E) 0p(G)
04(F) + 0,4(G) = 0,4,(G)[1 + g ,(E)].

Consequently we have

(6A.15)

W =3 - ox®] (Soa@exp (FE LI+ ouB0u@) ], 6416)

where we have used the fact that if G is fixed, a sum over all F <= Q is equiva-
lent to a sum over all E = Q.

For a fixed E, the term in curly brackets in (6A.16) is Z'{op)’ in a system
with interactions J, replaced by

J/ =J 1+ o,(E) (6A.17)

As the J, are non-negative, the same is true of the J,. Hence, by (6A.7),
{opy’ is non-negative and thus W is non-negative.

Sherman (1969) and Ginibre (1969a) have shown that (6A.8) is a special
case of a more general class of inequalities for Ising ferromagnets. If I'; is a
subgroup of I' [see remarks following (6A.10)], then

Z [{op) {oppcy — <opp) <pc>] = 0. (6A.18)

Delp

For I'y = {J}, this is precisely (6A.8), and additional inequalities are
obtained by making I', a larger subgroup. Thus far there seem to have been
no applications of the more general inequalities to problems of phase
transitions.
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B. Applications of the GKS inequalities

1. Existence of phase transitions

Let us consider the special case of the Hamiltonian (6A.1) with H and J;;
non negative. (This is obtained from (6A.5) by letting J,= H for # (4) =1,
Jy=J;; for A= {i,j}, and all other J,= 0.) By (6A.8), each {oy), and
consequently also the average magnetisation

M=V"1Y <o, (6B.1)
k

is an increasing function of the J;;. Consider two model Hamiltonians such
that the second (magnetisation M,) is obtained from the first (magnetisa-
tion M,) by adding ferromagnetic interactions. The inequality

M, <M, (6B.2)

for finite systems will, obviously, be preserved in the thermodynamic limit
Q — oo (assuming the limit exists) and in the limit H — 0+ (after 2 — o0),
which yields the spontaneous magnetisation M, (see Section V.A.1). Thus
if the first model has a phase transition, M > 0, the second must have one also.

This result can be used to prove immediately the existence of a phase
transition in a large class of Ising models with ferromagnetic pair inter-
actions. For example, the Peierls argument (Section V.A) shows that at
sufficiently low temperatures the three-dimensional Ising model on a simple
cubic lattice with nearest-neighbour ferromagnetic interactions has M, > 0.
The same must be true for a model with next-nearest-neighbour inter-
actions in addition to the nearest-neighbour interactions. The addition of
further neighbour interactions, including long-range pair interactions
(falling off, say, as |r;|™*), can only serve to increase the spontaneous
magnetisation.

Even without the Peierls argument the GKS inequalities could be used
to prove the existence of .a spontaneous magnetisation in a simple cubic
lattice with nearest-neighbour interactions. For such a lattice may be con-
structed from square lattices stacked one above another with the addition
of ferromagnetic bonds between the layers. The spontaneous magnetisation
of the square lattice, known by a direct calculation (Yang, 1952), is a lower
bound for that of the simple cubic lattice, and the critical temperaturef
(Curie temperature)

T, = sup{T: M(T) > 0} (6B.3)

for the former is a lower bound to the critical temperature for the latter.

t In addition to (6B.3), other definitions of “critical temperature” are often employed in
the literature. It is usually assumed that the different definitions yield the same tempera-
ture for any given model.
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The GKS inequalities may also be used to demonstrate the existence of
phase transitions in the presence of certain many-body forces. We start
with a model Hamiltonian of the form (6A.1) which is known to yield
M, > 0O at sufficiently low temperatures. The addition to this Hamiltonian
of positive J, with #(A4) even and >4, and chosen so that a thermo-
dynamic limit exists, will maintain the symmetry M(H) = — M(— H) (see
Section V.A.1) while increasing, or at least not decreasing, the spontaneous
magnetisation, which means M(H) will be discontinuous at H = 0 (in the
thermodynamic limit). Note that this argument fails if one adds to the
Hamiltonian terms J, with #(4) odd and >3, since M is no longer an
antisymmetric function of H.

2. Thermodynamic limit for correlation functions

In general it is very difficult to show that correlation functions (Section
II.LH) have a well-defined thermodynamic limit except at low densities or
high temperatures (Section III.C) well removed from the region where phase
transitions are expected. When the interactions are ferromagnetic, (6A.6),
one can use the GKS inequalities to show the existence of limits with certain
special choices of boundary conditions.

The Hamiltonian (6A.5) corresponds to ““free’” boundary conditions for a
finite system. Given finite sets B = Q' < Q, (6A.8) leads to

opyo < <0p)g (6B.4)

by the following argument. One may think of #, as a Hamiltonian for a
system including all the sites in Q, but all interactions J, = 0 for 4 not
included in Q’. It is easily verified that (o) is the same for this system as
for a system including only the sites in Q’. Clearly s, is obtained by
adding additional ferromagnetic interactions #,.

Using (6B.4) it is easy to show (for a less general situation, see Griffiths,
1967a) that {op)>,, Which is bounded above by 1, tends to a unique limit
{op) for any sequence of regions tending to infinity in such a way that
the smallest distance from a site in B to a site outside 2 tends to infinity.
If the J, are invariant under translations, {op) shares this property. (Note
that conditions such as (2B.24) and (3C.3) are unnecessary.)

Another set of boundary conditions, which corresponds intuitively to hav-
ing all 6; = + 1 for i outside Q (the conditions used in the Peierls argument,
Section V.A.2), is obtained starting with interactions J , defined on an infinite
lattice. For finite Q, let :

-W_Q* = - Z JD* Ops (6B.5)

D=
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where Jp* is the sum of all J, such that A n Q@ = D. For any Q' inside Q
one can imagine that the Hamiltonian s, * is obtained from #,* by
applying very strong (infinite) positive magnetic fields to sites in Q but not
in Q’, and thus for B =« Q' < Q, (6A.8) leads to

(opro™ = {opda*. (6B.6)

Once again, there is a well-defined limit {oz)* as 2 — oo, which need
not be equal to (though it cannot be less than) (o). As an example, con-
sider the square lattice with nearest-neighbour pair interactions and
H = 0. Here {0;,), is zero for all @, whereas the Peierls argument (Section
V.A.2) shows that {o;>* is strictly positive at a low enough temperature.

3. Monotonicity of thermodynamic variables

We have already pointed out that the magnetization M, (6B.1) is a mono-
tone non-decreasing function of any J provided all the J, are non-negative.
The average energy (per site)

VA = =V T Ty on) (6B.7)

is clearly (by Theorem 6.1) a decreasing function of the J as is also the
free energy

f=—-Wp"! InZ, (6B.8)
since

of 0]y = —V "1 {ap). (6B.9)

On the other hand, for fixed J, the correlations and the magnetisation
are decreasing functions of the temperature (only the quotient J,/kT enters
the Boltzmann factor). This in turn means that the entropy per site S is a
decreasing function of the Jy (Leff, 1970), since

0S/0Jp = —8]0J (3f [8T),= V =1 8<ag)/dT < 0. (6B.10)

Needless to say, the monotonic behaviour of the various thermodynamic
functions is preserved in the thermodynamic limit. The decrease of M with
T at fixed H > 0 is useful in obtaining certain inequalities at the ferro-
magnetic critical point (see Section IX.C below). The result (6B.10) was
used by Leff (1970) to show that certain ferromagnetic Ising models satisfy
the third law of thermodynamics.

4, Other applications

Mattis and Plischke (1969) employed the GKS inequalities to obtain a
lower bound on the magnetisation of the Ising model on a square lattice
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in a magnetic field. Falk and Suzuki (1970) have used them to discuss a
cumulant-like expansion for the entropy. For additional applications in
proving the existence of phase transitions, see RSM, p. 125, Weng et al.
(1967), and Section C.1 below. Applications to linear chains with long-range
forces are mentioned in Section VIII.C below, and to inequalities for pair
correlation functions near the critical point in Section IX.C.

C. GKS inequalities for other systems

1. Ising ferromagnets with spin greater than 1/2

The extension of Theorem 6.1 to the case of Ising models with general spin
(Section I1.D.1) is relatively straightforward (Griffiths, 1969b), since an Ising
model with spin s > 1/2 is equivalent to an s =1/2 model which has a larger
number of sites and additional ferromagnetic pair interactions. Given a finite
set of lattice sites i =1,2,... V, let u(i) be a multiplicity function which
assigns 0 or a positive integer to each site, and define

Sp = n (Szi)u(i)- (6C.1)

Given a Hamiltonian
H = —Z J, s, (6C.2)
n

with the J, non-negative (the sum is over different multiplicity functions),
one can obtain the results

(s 20 (6C.3)
(8,850 = (8,0 {8y (6C.4)

Note that these inequalities include results such as
(520D = (52" {0 (6C.5)

which are trivial in the case s =1/2 where (s;)? is a constant, but not so
obvious for s >1/2.

The case of an Ising model with infinite spin (Section 1I.D.2) is obtained
by replacing s,; by t,; and s, by ¢,, etc., in the above discussion. The in-
equalities (6C.4) and (6C.5) remain valid for non-negative J,. Ginibre (1970b)
has discussed an even more general class of Ising-like systems.

Sometimes it is useful to consider a Hamiltonian for the general spin case
which has been suitably normalised to yield a simple limit as s — co.
Griffiths (1969b) has used the GKS inequalities to show that a model with

yf = —S'_2 Z Jusziszj "‘S-lHZSzt (6C.6)
i<j ]



2. Rigorous results and theorems 79

for general s will exhibit a spontaneous magnetisation M, > 0 (assuming
the existence of a thermodynamic limit on a suitable lattice) provided the
s =1/2 model has M, > 0 at a somewhat higher temperature. The critical
temperatures, (6B.3), satisfy the inequality

it TLA<STE<ST.R. (6C.7)

This establishes the existence of phase transitions in a large class of Ising
models with s >1/2, including the s — oo limit (replace s,; by ¢,; in (6C.6)
and replace s~2 and s~! by 1), and places rough bounds on the critical
temperatures.

2. Plane rotator model

Ginibre (1970b) has shown how to extend the GKS inequalities to the
“plane rotator’” model in which with each site one associates a unit vector
t; with only two components t,; and ¢,,. With 0; the angle between t; and
the x axis, the partition function is given by (2D.3) with w; replaced by
0;. In a system with V sites let @ stand for (04,0, ...0y) and m for
(my, m, ... my), where the m; are integers (positive, negative, or zero). Pro-
vided the J, are all non-negative in the Hamiltonian

H = =) J,cos (m-0), (6C.8)

one obtains the inequalities
{cos(m-9)) =0 (6C.9)
{cos(n-0)cos(m-0)) = {cos (n-0)> (cos (m-0)). (6C.10)
More generally, if 7, denotes any finite product of the form
| cos (mY - @) cos (m'® - 0) ... cos (m™ - 9), (6C.11)

where m'? is some V-tuple of integers, and 7, another such product (not
necessarily with the same number of terms), then

(n1> =0 (6C.12)
(my 1) = {1y ) {my). (6C.13)

Despite the appearance of greater generality, one can easily obtain (6C.12)
and (6C.13) from (6C.9) and (6C.10), respectively, by successive applica-
tions of the addition formula

cos (m® - @) cos (m® - 0) = 1[cos m» + m@®)- 0

(6C.14)
+ cos (mY) — m®) - Q].
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[This also makes it possible to reduce a Hamiltonian containing such
products to the form (6C.8).]
As an example, consider the obvious analog of (6A.1):

i<y

with J;; and H non-negative. The inequality (6C.13) implies, in particular,
that correlations of the form (t,-t;> or {t,;) are increasing functions of
the J;;.

Ginjibre (1970b) has shown that (6C.12) and (6C.13) also hold for a dis-
crete analog of the plane rotator model in which 0; is a multiple of 2xn/p, p
some integer. In addition he has obtained some results for the case where
t is a unit vector with three components (Section I1.D.2), but, unfortunately,
these do not include the usual “Heisenberg’’ interaction of the form t; - t,,
for which a suitable analog of (6A.8) has not yet been proved.

3. Quantum lattice models

Some limited progress has been made in extending the GKS inequalities to
the anisotropic Heisenberg model with pair interactions:

Ho= =) U 0u0s + Jij 0,0y + Jif 0,0,) — ) Hioy.  (6C.16)
i

i<j

Hurst and Sherman (1969, 1970) have shown that {o;"6;) is non-negative
in the isotropic case J;;* = J; = J;i = J;; 2 0 and H; > 0, but that in
general 0 {e;6;)/0J); can be of either sign, so that one possible generalisa-
tion of (6A.4) fails. The reader should note that, due to non-commuting
operators, the derivative just mentioned is not the same as

B (a; 'G'j) (64" 6))) — o, '0'j> (o a6p)].

Recently Gallavotti (1971) has obtained inequalities analogous to (6A.4)
for the special case J;7 =0 and H; =0 under the conditions J;;* > 0,
J;f = 0. For n; and =, products of the o,; he obtains

(i 7p) 2 {7y ) (72D (6C.17)
0 {my>0dF = 0 (6C.18)
8 (n>)0d " < 0. (6C.19)

Ginibre (1970d) has obtained a generalisation of (6A.7) for quantum
systems which includes as special cases the result of Hurst and Sherman just
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mentioned together with a result due to Asano (1970a, b, c). Let o,%, 0,”
stand for (o, + i0,,)/2, (0, — ig,,)/2, respectively, and for R = Q let

o =[]o%; og” =[]0 (6C.20)
reR reR
For a Hamiltonian
H = — Z J(R) og — Z Z K(R,S)ox" 05~ (6C.21)
Rc RceRSc
with the condition
K(R,S) = 0, (6C.22)

Ginibre shows that for any R and S
{ogT 05> = 0. (6C.23)

In particular the pair Hamiltonian (6C.16) satisfies (6C.22) provided
Jii* = |J;l, J;j° arbitrary; and (6C.23) implies (x> > 0 for = any product
of o,; for different values of j.

4. Coupled oscillators

Leff (1971) has established some GKS inequalities for a set of coupled
oscillators (closely related to the ‘“‘spherical model’’) with energy

i J i

where —o0 < x; < 0, i =1,2,... ¥, and the J;; = J; (note that the sum
includes diagonal terms J;;) form a positive definite matrix. For H; > 0
and J;; <O for i #j (also under somewhat weaker conditions—see the
original article), he shows that

(x4 20, (6C.25)
0{x,>/0H, = 0, (6C.26)
0 <xA>/Jmn \<\ O: (6C27)
where
X, = H X;. (6C.28)

icA

Note that the absence of a minus sign in front of the first term in (6C.24)
means that J;; < 0 for i # j corresponds to a “ferromagnetic’’ interaction
[compare with (6A.1) and (6A.2)].
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D. Other correlation inequalities

1. “Mean-field” bound on correlation functions

Kelly and Sherman (1968) have shown that if R is a subset of Q which
contains a site k, the following inequality (in the notation of Section A)

(og) < Z (tanh BJs) (o5 08>, (6D.1)
S(keS)
with summation over all S(= Q) containing k, is valid if all the interactions
are ferromagnetic, (6A.6).

Griffiths (1967b) used a particular version of this inequality to place an
upper bound on the critical temperature T, of an Ising model with pair
interactions, (6A.1). In particular, if R is the single site k, one has (with
sum over j # k)

{o,> < tanh BH + Z (tanh BJ ) (o> (6D.2)

for H > 0 and the J; non-negative. Upon summing both sides over all V,
sites in 2, one obtains

M=V, ) {o;) < tanh BH + &M (6D.3)
keQ
where
¢ = max (Z tanh BJ jk) (6D.4)
k \'J

For ¢ <1, (6D.3) gives the upper bound

M < (tanh BH)/(1— &) (6D.5)

which goes to zero with H (= 0).

If the J ; are invariant under translations and decrease sufficiently rapidly
at infinity, the inequality (6D.5) persists in the thermodynamic limit and
shows that there cannot be a spontaneous magnetisation above the
temperature where @ is equal to 1. Thus this temperature is an upper bound
on T, In particular if J;; = J for nearest-neighbour pairs on a lattice with
coordination number g (each site has g nearest neighbours) and is zero
otherwise, one has

kT./J < [tanh™!(1/g)]" ! < gq. (6D.6)

In the “‘mean-field” approximation (otherwise known as the ‘“‘molecular-
field” or “Bragg-Williams™ approximation; see Huang, 1963, p. 336) the
critical temperature is given by kT = qJ, and hence (6D.6) implies that
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the mean-field critical temperature for an- Ising ferromagnet is an upper
bound on the true critical temperature.

2. Bounds on pair correlations using self-avoiding walks

For a Hamiltonian (6A.1) with the J;; non-negative and H = 0 Fisher (1967a)
has shown that the pair correlation function has the bound

Copoy < ), WII'(k, D] (6D.7)
(R

where the sum is over all non-intersecting walks (or ‘“‘chains’’) from & to /,
and W is a weight assigned to each walk in a manner we shall describe. A
non-intersecting walk from k to / with r +1 steps is an ordered set of pairs
of the form (k, m,), (my, m,), ... (m,_y, m,), (m,, 1), where the m; are sites
in ©, no two m; are the same, and no m; is equal to either k or /. The pair
(k, ) by itself is also a non-intersecting walk. The weight W is the product

W = v(k, my) v(my my) ... v(m,, ) (6D.8)
with
v(i,j) = tanh BJ;;. (6D.9)

Although (6D.7) applies when H = 0, it is easily extended to give useful
results for a field H > 0 by introducing a ‘“‘ghost spin” (Griffiths, 1967a)
7y, additional pair interactions Jo; = H (or J,; = H; if the field varies from
site to site), and replacing {o;) by <o, 0,>. Using this device and certain
bounds for the right side of (6D.7), Fisher (1967a) was able to construct
upper bounds for the critical temperature of various models. In particular,
for lattices with coordination number ¢ and nearest-neighbour interaction J,
he showed that

kT, 2J

¢S fog [q/(q — 2)] (6D.10)

which is an improvement on (6D.6), especially for small values of gq. Even
better bounds are available in some special cases.

Note that whereas (6D.6) and (6D.10) imply a vanishing spontaneous
magnetisation (also upper bounds for the susceptibility OM/0H at H = 0)
for temperatures above the estimates for T, they do not guarantee that the
[tee encrgy is an analytic function at H = 0 in this temperature range. Ana-
Ivhicity has been proved (to date) only at considerably higher temperatures
(hee Section 11.C).
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3. Concavity of the magnetisation

The assumption that the magnetisation M is a concave function of field H
for H > 0 is useful for deriving certain inequalities relating thermodynamic
properties at the ferromagnetic critical point (see Section IX.C below).
For Ising models it suffices to show that

{o; 0j o> — 0 (oj01) — o} {0; 04
—<01 €0;0;) +2{0;){o;> <0y < 0.  (6D.11)

This inequality for Ising ferromagnets with non-negative pair interactions,
(6A.1) and (6A.2), and H > 0 was established by Griffiths er al. (1970).

It is also valid for Ising ferromagnets of spin greater than 1/2, with s, in
place of g;, etc.

Vil. Systems With Continuous Symmetries in One and Two
Dimensions

A. Introduction; the Bogoliubov inequality

One expects an Ising ferromagnet when it undergoes a phase transition
(Section IV) to have only two ordered states, one with a positive and one with
a negative magnetisation (corresponding to vapour and liquid in the lattice
gas). Although the Hamiltonian is invariant under spin-reversal, a particular
ordered state is not, and hence it is customary to say that the phase transition
results in a ‘““broken symmetry’’.

There are a number of systems in which the ordered state is expected to
“break’ a continuous symmetry of the Hamiltonian. For example, in the
Heisenberg ferromagnet (see Section B below) the Hamiltonian is invariant
under rotations (in the ‘“‘spin space’’) while the spontaneous magnetisation
in an ordered state can point in a particular direction in space. Similarly, there
is a periodic density variation in a crystalline solid even though the
Hamiltonian is invariant under all translations (and not simply those which
carry a Bravais lattice into itself). Superfluids possess an ‘““order parameter’
with continuously variable phase.

Intuitive arguments have been available for some time which indicate that
systems of the sort just described, for which the ordering breaks a continuous
symmetry, cannot exhibit true ordering in one or two dimensions, provided
the forces are of short range. Recently it has been possible to place them on a
more rigorous footing with the help of an inequality due originally to
Bogoliubov (1962):
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THEOREM 7.1. Let # = H#' be a Hermitian matrix on a finite dimensionaly
vector space, and A and C arbitrary matrices on the same space (the dagger
denotes the Hermitian conjugate). The inequality

3B<AAT + AT4) - <[[C, #1],C']) = KIC, AD|? (7A.1)
holds when the angular brackets denote a thermal average:
(B) = Tr[Bexp (— #)]/Tr [exp (— )], (7A.2)

and the square brackets a commutator, [C, A] = CA — . For the proof, see
RSM, p. 130, or Mermin and Wagner, (1966).

Before discussing (in B) how this theorem can be used to rule out a
spontaneous magnetisation for a Heisenberg ferromagnet in one and two
dimensions, we present an older, non-rigorous argument which leads to the
same conclusion. Consider a square lattice measuring L sites on an edge, with
unit lattice constant and periodic boundary conditions. According to element-
ary spin wave theory (Keffer, 1966), the spin-wave mode associated with
wavevector k,

ki =2mn,/L, k,=2mnJL, —¥L<n,<%L, —3L<n,<%}L, (7TA3)
has an energy e(k) which behaves as
e(k) ~ nlk|? (7A.4)

(n a positive constant) when |k| is small. The departure of the average
magnetisation per lattice site from its saturation value is proportional to

L2 %’ [exp (Bz(k)) —1]7* (7TA.5)

where the sum excludes k = 0.

One easily verifies the fact that the quantity (7A.5) diverges as L — oo due
o contributions from small k, for which the summand is approximately
| nIk|*]1~ 1. The divergence is relatively weak (proportional to log L) and
indicates the breakdown of the simple spin wave theory, which in turn
suggests the absence of an ordered state.

An analogous argument exists for a two-dimensional crystal lattice in the
harmonic approximation in which the potential energy is a quadratic form in

} We are not aware of any careful discussion of the conditions under which (7A.1) hplds
in an infinite-dimensional space, despite the fact that it is frequently employed in discussions
ol quantum continuum systems.
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the displacements u; of atoms from their equilibrium positions on a regular
lattice. The thermal average (luj|2> again diverges for systems of increasing
size, due to the presence of long-wavelength phonons, at any finite
temperature.

One should note that the divergences in the two cases just discussed are
even stronger for a one-dimensional system, while the appropriate sums
converge, even in the limit of infinite volume, in three dimensions.

An alternative and equally non-rigorous, but intuitively appealing,
argument, which leads to the same conclusions, can be based on the “drop-
let’> model of condensation. See Fisher (1967b) and Mermin (1969).

B. Heisenberg ferromagnets and antiferromagnets

We shall present a rigorous version of the preceding intuitive arguments for
the case of Heisenberg ferro- and antiferromagnets which follows (with minor
changes) that of Mermin and Wagner (1966); see also RSM, p. 131. We adopt
the Hamiltonian

H=Hy+ H,, H,=-HYs,,
J

7B.1
Hoy = — Z Jij 820825 + Sy Sxj + Sy 8,01, ( )
i<j
where #, is the Heisenberg Hamiltonian when o =1, 5, represents a
perturbing field, and the s; are spin operators with the usual commutation
relations:

[ija syk] = i5jk Szj (7B.2)

etc., and §? = s(s + 1). The J;; = J;; are assumed to be invariant under
translations and satisfy the condition

J2 = Z ‘Jljl ll‘i - l'jlz < 0 (7B3)
J

We shall consider a square latticet and a finite square containing V = I?
sites, with Hamiltonian obtained by suitable restricting the sums in (7B.1).
In addition, define

5,(K) = Z exp (ik - 1)) s;; (7B.4)

and similarly s,(k), s,(k), with k one of the wavevectors (7A.3).
For a fixed k, let Cin (7A.1) be 5,(k) and 4 be 5,(—k). Their commutator is
i[C, A] = 5,(0) =) s, (7B.5)
J

+ Of course there is no difficulty extending the argument to other two-dimensional
lattices.
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This choice for C is motivated by the fact that s#, is invariant under
rotations about the z-axis. Thus it commutes with s,(0), the infinitesimal
generator of such rotations, and “almost” commutes with s,(k) for small k.
Having determined C, one chooses A so that the commutator (7B.5) yields
5,(0), whose average value we wish to bound.

It is straightforward to work out the double commutator

[[C, #71], C'] = H s5,(0)
+ 20 Y, J;; [1 — cosk(r; — r)108Sy; + Sy:8,;] (7B.6)

i<
and show that its average is bounded by
([LC, #1, C'T) < V{IH M,| + lalJ, s*[k|?}, (7B.7)

where
M, =V~ s(0)> (7B.8)

is the average x component of the magnetisation per site, and we have used
the fact that (s,;s,;) cannot exceed s2.

The left side of (7B.7) is also, by (7A.1), bounded below by a positive
constant except in the uninteresting case M, = 0. We may then rearrange
(7A.1), insert the estimate (7B.7), and sum over all k given by (7A.3) to obtain

M2V [ HM,| + o] T, s* k|11
k
< (ﬁ/ZVZ) ; <Sy(k) Sy("—k) + Sy(""'k) sy(k)>
= (B/V) Z (82> < s> (7B.9)

If we take the limit V — oo with H > 0, the sum on the left side of the
inequality may be replaced by the corresponding integral, and the inequality
is somewhat strengthened if the integral is restricted to [k| < =:

MN\2 [~ kdk (M, [27)? ||, s27?
— 5 = slog |1 + ———
2n o |[HM,| + |a|J, sk 2)alJ, s |HM,|

] < Bs2.
(7B.10)

This yields an upper bound on |M,| which goes to zero with H as
||(log |H|)|[]~/*. The analogous argument in one dimension gives an upper
bound which varies as |H|'/3. In either case a spontaneous magnetisation is
impossible.

In the case of a Heisenberg ferromagnet, « = 1, the argument also, by
symmetry, rules out a spontaneous magnetisation in the z direction. For
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la] <1, in particular for o near zero, one expects intuitively that the
spontaneous magnetisation, if any, will be along the z axis and not in the
xy plane (compare with the results of Ginibre, Section V.D), so the argument
is mainly of interest for |¢| > 1. In particular, there is no spontaneous
magnetisation in the XY model, obtained from (7B.1) by omitting the
interactions of the form s,;s,;. (Since these commute with C, they make no
contribution in (7B.6); thus (7B.9) and (7B.10) are unchanged.)

A slight modification of the argument serves to rule out antiferromagnetic
ordering as well. Here one replaces the perturbing field J#, by

Hx = —H[s,.(K) + s,(—K)]/2 (7B.11)
and A4 is set equal to s5,(K — k) + s,(—K — k) in order to show that
Mg = (1/2V) {5.(K) + s,(—K)> (7B.12)

vanishes as H goes to zero. In particular if K = (r, 7), My is the x component
of the sublattice magnetisation (see Section V.C.1). Thus the Mermin—-Wagner
argument also rules out a phase transition of the usual sort in a Heisenberg
antiferromagnet in one or two dimensions (with forces whose range is not too
long).

C. Other applications of the Bogoliubov inequality

1. Classical spin systems

Mermin (1967) has shown that the inequality (7A.1) also holds in classical
systems if the commutator brackets are replaced with Poisson brackets and if
certain terms in the corresponding classical thermal averages vanish. He has
used this to rule out phase transitions in one and two dimensions for the
infinite-spin or “classical’”’ limit of (7B.1). Once again (7B.3) must be
satisfied ; the forces cannot have too long a range.

2. Two-dimensional crystals

Mermin (1968) has applied the Bogoliubov inequality and an analogous
classical inequality to the problem of ruling out the possibility of genuine
crystalline ordering in two dimensions for a system of identical particles with
pair potential ®@(r). In order to carry through a proof it is necessary to
assume that both @ and a new pair potential

Y(r) = &(r) — Ar|* |AD|

satisfy the criteria needed to insure the existence of a thermodynamic limit
(Section II.E.6) when A is sufficiently small and positive; here A is the (two-
dimensional) Laplacian. This allows for many potentials of the Lennard-
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Jones type, but unfortunately excludes the possibility of hard cores, and in
particular the case of hard disks for which computer simulation (Alder and
Wainwright, 1962) indicates the existence of crystalline ordering, at least for
a small system. In the quantum caset it is necessary to impose some
additional conditions on the potential. For these and the details of the proof,
we refer the reader to Mermin’s paper.

Alternative arguments ruling out crystalline ordering in two dimensions
have been put forward by Fernandez (1970). Certain assumptions are not
proved, so these arguments cannot at present be regarded as rigorous.

3. Superfluids

Hohenberg (1967) has used the Bogoliubov inequalityt to rule out the
existence of a non-zero ‘‘order parameter’ at a finite temperature in one or
two-dimensional superfluids (superconductors and superfluid helium).

4. Other results

Wegner (1967) has used the Bogoliubov inequality to show the absence of
magnetic ordering in one and two dimensions for a model with itinerant
electrons. Chester et al. (1969) have emphasised the fact that the arguments
employing Bogoliubov’s inequality also apply to systems of finite thickness
or cross section, systems in three-dimensional space in which one or more
linear dimensions remain finite in the thermodynamic limit, and that they do
not require the use of periodic boundary conditions.

Jasnow and Fisher (1969, 1971), and Fisher and Jasnow (1971) have investi-
gated the implications of Bogoliubov’s inequality for systems in which one
does not introduce an auxiliary “symmetry breaking” field [the 5, of (7B.1)].
They show that it is still possible to put bounds on the behaviour of various
correlation functions and thereby exclude the possibility of long-range
ordering.

VIll. One-Dimensional Systems

A. Introduction

Despite their seemingly remote connection to the real world, one-dimensional
systems have received considerable attention from mathematical physicists.
This no doubt reflects (in part) the difficulty of obtaining any precise results
in systems in two and three dimensions, and the hope that calculations on
one-dimensional models may provide some insight into the mathematical
mechanisms of phase transitions.

T See footnote on p. 85.



90 Robert B. Griffiths

A good summary of the work up to 1965 will be found in the book by
Lieb and Mattis (1966). See also the article by Thompson in this series.
Recent work has done much to clarify the conditions under which the oft-
quoted “theorem’” that “there can be no phase transition in one dimension’
is true as well as those under which phase transitions may be expected.

The intuitive arguments for the absence of a phase transition (see, e.g.,
Landau and Lifschitz, 1969) depend on the assumption that an interface
between two “phases’ costs a finite amount of energy relative to the situation
where only one ““phase’ is present. When forces of sufficiently long range are
present, this assumption is no longer true, and there are certain cases in which
a phase transition can be explicitly exhibited or its presence can be
demonstrated.

B. Absence of phase transitions in one dimension

Proofs of the absence of phase transitions in one-dimensional systems are
almost always based on one or another variant of the method of transfer
matrices and its analog for continuum systems. This rather powerful
techniquet (which of course finds applications in higher dimensions as well)
enables one to build up the lattice one site at a time, or the continuum gas one
particle at a time, and hence reduces the problem of the infinite system to a
relatively more tractable form.

In Sections 1-4 below we shall always assume translational invariance of
the interaction, and thus will not state this explicitly for each case.

1. Lattice systems with interactions of finite range

For classical lattice systems we assume that the J, or &, in (2B.23), or their
analogs for systems of higher spin, vanish if A contains two sites i and j
further apart than a fixed distance n. The application of the Perron-
Frobenius theorem to the transfer matrixf (RSM, p. 134; Baur and
Nosanow, 1962) yields at once the result that the thermodynamic functions
are analytic functions of the temperature (T > 0) and the interactions, so
that there is no phase transition.

The same result for quantum lattice systems with finite range interactions
was obtained by Araki (1969, 1970).

2. Continuum systems with interactions of finite range

Consider a classical gas in one dimension with pair interactions of finite
range and with a hard core: for some b > a > 0, let &(r) be + o for |r| < a
and O for |r| > b. Van Hove (1950) showed that if, in addition, & is continu-
ous and bounded below for a < r < b, the pressure is an analytic function of

t See Chapter 5, by Thompson in this volume.
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the chemical potential, or activity, at a fixed temperature. The proof (RSM,
p. 139) consists in applying the appropriate extension of the Perron-Frobenius
theorem to the integral kernel which is the continuum analog of the transfer
matrix.

3. Lattice systems with infinite-range interactions

Ruelle (1968) has discussed a one-dimensional classical lattice gas with
interactions which, though they are not of finite range, fall off sufficiently
rapidly at large distances. To be precise, he requires that the potential, in the
notation of Section II.B, (2B.23), satisfy

;' 6(A) |D4/Vy < 0 (8B.1)

where the sum is over all sets A which contain a particular site i, and 6(A4)
(the diameter) is the largest distance between two sites in the set A. In the
case of pair interactions alone, this means that the @;; (equivalently the J;;)
must satisfy

Z | D] |1y — r;] < 0 (8B.2)
J

or, roughly speaking, that @;; must fall off more rapidly than |r, — r;| 2.
Ruelle has shown that under these conditions there is no phase transition in
the weak sense that the pressure and all the correlation functions depend
continuously on the temperature, chemical potential, and other parameters
which enter the potential. This rules out first-order transitions, but permits
(though it does not imply) the possibility of “higher-order’ transitions in the
'sense of non-analytic dependence on some parameter.

For classical lattice systems with interactions which decrease exponentially
rapidly with increasing distance, Araki (1969, 1970) has shown the absence
of a phase transition in the strong sense of analyticity. And for a decrease
which is at least as rapid as exp (—#'), n the interparticle distance, ¢t > 0,
Gallavotti and Lin (1970) have shown that the pressure and correlation
functions are infinitely differentiable.

There seem to be no comparable results available as yet for one-dimensional
quantum lattice systems with interactions of infinite range, apart from the
Mermin-Wagner argument (see Section VII) which can only be applied in
situations with a special symmetry.

It should be noted, of course, that in both classical and quantum lattice
systems one can establish the analyticity of the pressure and correlation
functions (reduced density matrices in the quantum case) at sufficiently high
(emperatures, with suitable restrictions on the interactions. See Section III.C
and Chapter 3 in this volume by Ginibre. These arguments (unlike those pre-
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viously mentioned) do not make explicit use of the one-dimensional character
of the system.

4. Continuum systems with infinite-range interactions

Gallavotti et al. (1968) and Gallavotti and Miracle-Sole (1970) have shown
that the pressure and correlation functions of a classical gas with a hard core
depend continuously on the temperature, activity, etc. provided the potentials
(which may include many-body interactions) satisfy a condition analogous
to (8B.1) which insures that they decrease sufficiently rapidly at large
distances.

C. Existence of phase transitions in one-dimensional Ising ferromagnets

Apart from models which can be solved exactly (see, e.g. Joyce, 1966; Fisher
and Felderhof, 1970), and excluding the case of infinitesimal interactions of
infinite range, the only general argument for the existence of phase
transitions in a one-dimensional system is due to Dyson (1969a). He con-
sidered an Ising ferromagnet with pair interactions:

H ==Y ¥ J0)06,04 (8C.1)
i nz1
all the J(n) non-negative.
In order to have a well-defined thermodynamic limit it is necessary
(Section II.B.3) that

¥, @l = 3, Jt) < o0 (5C2)

and, in particular, if J(n) decreases as n~%, that « be greater than 1. On the
other hand, the argument of Ruelle (Sections B.3 above) shows that no (first-
order) transition will occur unless

Y nJ(n) = o, (8C.3)

or o < 2. Dyson has been able to prove the existence of a phase transition for
1 < o < 2, while the borderline case o = 2 remains in doubt. [The condition
(8C.3) (with J(n) > 0) is not by itself sufficient to insure the existence of a
phase transition. Dyson (1969b) has shown that there is no phase transition if

lim [log(log N)]~! i nJ(n) = (8C.49)

N—= oo
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Dyson’s proof employs a series of ‘“hierarchical models’” defined as
follows. The hierarchical model of size N contains 2V sites divided into two
blocks containing 2" ~ ! sites each, while each smaller block is in turn divided
into blocks of 2¥~2 sites, etc. A block of size g contains 27 sites. The case
N = 3 is illustrated in Fig. 12.

The Hamiltonian 52 for the hierarchical model corresponding to the
linear chain (8C.1) is defined as follows. Define

J,=21"2p = min J(n). (8C.5)
1<n<29-1
Then
= —Z jijO'iO'j (80'6)
i<j

with J;; equal to J,, where q is the size of the smallest block containing both
i and j.t Thus in the hierarchical model the interaction between two spins is
always less than or equal to that in the corresponding linear chain if one
arranges the sites as in Fig. 12. Consequently, if one can prove the existence
of a phase transition, a non-zero spontaneous magnetisation, in the
hierarchical model in the limit N — oo, there must, by the GKS inequalities
(Section VI.B.1) be a transition in the corresponding linear chain.

o o |0 O o | © O

FiG. 12. Relationship between the hierarchical model, with blocks indicated by rectangles,
and sites, indicated by circles, in a linear chain. The largest block is of size 3.

In the hierarchical model, unlike the original linear chain, there is a
relatively simple recursion relation between the partition function, for a
fixed total magnetisation, of the model of size N + 1 and the corresponding
quantity for the model of size N. Dyson exploits this relation to prove the
existence of a phase transition at sufficiently low temperatures, provided

L= qi [log(1 + g)1/b, < . (8C.7)

A comparison of (8C.5) and (8C.7) shows that if J(n) decreases as n™%, a
phase transition will occur for 1 < a < 2.

T This definition has the advantage, over that originally used by Dyson (1969a), that it
exhibits a more obvious connection between the linear chain and the corresponding
hierarchical model, at the cost of a very slight complication in the proofs (Griffiths, 1971).



94 Robert B. Griffiths

D. Absence of ferromagnetism for electrons in one dimension

Lieb and Mattis (1962) have studied a one-dimensional quantum continuum
system of spin 1/2 fermions (‘“‘electrons’’) with a Hamiltonian, for N particles,

H = =, 0%0x* + V(x; ... xy), (8D.1)

where V is a potential symmetric under the interchange of any pair of
particle coordinates x; and x;. The total spin angular momentum s is a
constant of the motion, and thus energy levels may be classified according
to the value of s. Lieb and Mattis showed that, with suitable boundary con-
ditions (e.g., particles confined to a box of length L and the wave function
vanishing when any x; = 0 or L), the lowest energy level for a given s, E(s)
satisfies the inequality

E(s) < E(s') (8D.2)

whenever s is less than s’, except that strict inequality in (8D.2) must be
replaced by < for certain “pathological”” potentials (such as a potential
with a hard core). The inequality (<) can also be proved for certain rather
special types of potential for systems in two or three dimensions.

Normally one would expect the ground state of a ferromagnet to exhibit
a large value of s, and thus the result of Lieb and Mattis strongly suggests
that a one-dimensional system of the sort described will not exhibit a ferro-
magnetic phase transition. Since the properties of a system at a finite (even
a very low) temperature cannot necessarily be inferred from the character of
the lowest energy state (Griffiths, 1965b, 1970) when one takes the thermo-
dynamic limit, their argument is not a strict proof that ferromagnetism is
absent at a finite temperature.

IX. Miscellaneous Results

A. Continuity of pressure

It is found experimentally that a first-order phase transition in pure
materials at a constant temperature T corresponds to the state of affairs
indicated schematically in Fig. 4 (Section I1.F): the pressure p as a function of
chemical potential u has a discontinuous first derivative, while the Helmholtz
free energy f'is a linear function of density p between the two densities corres-
ponding to the pure phases. The reverse situation, a linear section in the
graph of p(u) and a discontinuous first derivative of f(p), is not observed
in nature. Were such a hypothetical “anti phase transition” to occur, the
pressure

p = pflop)r — f (9A.1)
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would be a discontinuous function of p, in contrast to the usual phase
transition in which p is a discontinuous function of u, and hence of p. Con-
sequently the arguments which rule out the existence of this anti phase
transition in certain model systems are commonly called arguments for the
“continuity of the pressure’’.

Most of the proofs of continuity of pressure (Ruelle, 1963a; Dobrushin
and Minlos, 1967; Ginibre, 1967; Ruelle, 1970) have been carried out for
classical continuum gases with a pair potential satisfying various restrictions,
though recently Ginibre (1970c) has extended the arguments to include
quantum systems of bosons. The basic idea—see RSM, p. 58—is to establish
a lower bound to the fluctuation of the total number of particles N in the
grand ensemble for a finite system Q:

(N = ANDHKNYe > C > 0, (9A.2)

where C depends continuously on temperature and u, but is independent of
Q. The left side of (9A.2) is equal to

B~ (0p/0p)r = (Bp)™* (8°po/Op®)r, (9A.3)

with p = (N)q/Vq, and thus (9A.2) places an upper bound on dp,/dp, or
a lower bound on the compressibility [= p~1(0p/dp,)] for the finite system
Q. Since C is independent of Q, the preceding inequality can be combined
with the usual arguments for the existence of a thermodynamic limit for
po(u) to show that the limiting pressure is a continuous function of p and the
limiting compressibility (wherever it existst) has a finite lower bound.

In order to obtain (9A.2) it has thus far been necessary to put slightly
stronger conditions on the pair potential than those needed to prove the
existence of a thermodynamic limit. The weakest assumptions (for the
classical gas) are those of Ruelle (1970): the potential ¢(r) must be super-
stable (Section II.E.2), must satisfy (3B.5), and must be “lower regular’,
i.e., satisfy the second (= — ¢,) condition in (2E.17).

Since continuity of pressure arguments show that p is a strictly convex
function of p (no linear segments in the graph), it is rather natural to ask
whether p is a strictly convex function of T or of various parameters entering
the potential. At the present time there seem to be no published results on
possible extensions of the ‘“‘continuity of pressure’” arguments to include
these cases.

t 'T'o be more precise, one may say that p(p) satisfies a Lipschitz condition. See Dobrushin
und Minlos (1967).
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B. Random systems

Most of the rigorous results on the existence of a thermodynamic limit and
the presence or absence of phase transitions have been obtained for model
systems with interactions invariant under some sort of translational sym-
metry. But there are situations in which models without this symmetry would
seem to be a more appropriate representation of the physical state of affairs.
One of these is a paramagnetic crystal in which the interaction between
magnetic ions may be represented, in some approximation, by the Ising or
Heisenberg model, but in which some of the magnetic ions have been replaced
by nonmagnetic impurities. If the nonmagnetic atoms are fixed in position but
are located “‘at random’’ on sites in the crystal, in particular if they do not
form a regular lattice, the corresponding model Hamiltonian will not possess
translational symmetry.

The situation just described must be sharply distinguished, as emphasised
by Brout (1959), from the case of a paramagnetic gas in which the atoms
are free to move about, and the spatial positions will be correlated with the
magnetic interactions. Under these circumstances the statistical distribution
should be given by the usual Boltzmann factors, with a Hamiltonian which is
translationally invariant, even though the distribution of atoms at a given
instant of time is not. Similarly, a low viscosity liquid containing ‘impurities”
in the form of a small number of molecules of a second species can be des-
cribed by the usual statistical procedures based on a translationally invariant
Hamiltonian. However, in a crystal the diffusion times of atoms are rela-
tively long (except at elevated temperatures) and it seems sensible to assume
that the location of impurities will not be appreciably altered in response
(say) to an applied magnetic field, at least in the time required for a typical
thermal measurement. The fact that the disorder in the location of the non-
magnetic ions is “frozen in”> makes a Hamiltonian which lacks translational
invariance an appropriate model for such a system.¥

Griffiths and Lebowitz (1968) investigated the thermodynamic limit for a
simple lattice model in which a fraction p of the sites of a regular lattice
are occupied by magnetic atoms or “‘spins”, and the Hamiltonian is a sum
of interactions between pairs of spins on occupied sites. For a finite system Q
it is convenient to introduce two types of averaging: the ordinary Boltzmann
thermal average, and an average associated with the different possible arrange-
ments of spins on the sites in Q. Let 6 be the subset of sites from Q occupied
by spins. The Hamiltonian associated with 6 is obtained by starting with

+ It should be noted that models like those of Syozi (1965), in which the density of impuri-
ties is controlled by inserting a chemical potential, correspond to a “liquid” rather than a
“frozen” system, and employ a Hamiltonian with translational symmetry. Although “liquid”
and “frozen” models can often be made to yield qualitatively similar results for certain
properties, their mathematical structure is quite different.
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(2C.5), assuming the J;; and H; = H are translationally invariant, and dis-
carding all terms except those for which both 7 and j are in 6. With 6 fixed,
the free energy per site f(6) may be obtained in the usual manner, using
(2C.4). The “‘average’ free energy per site in Q is defined as

fa= 9;9 P(6) fa(6), (9B.1)
where P(6) is the probability assigned (in a manner to be discussed) to the
subset 0.

That (9B.1) is a reasonable way of defining the free energy for a “frozen”’
system with impurities can be seen as follows (Brout, 1959). For conceptual
purposes we may imagine a very large crystal split up into a number of smaller
crystals of identical (macroscopic) size and shape. The free energy per site of
the large crystal is then (apart from the effects of boundaries between the
smaller crystals) the arithmetical average of the free energies of the smaller
crystals. Such an average will have the form (9B.1) if P(0) gives the relative
frequency of occurrence of a given distribution of occupied sites among
the smaller crystals.

For a completely random distribution of magnetic ions occupying a frac-
tion of sites p, one can choose

P(0) = p'o(1— p)'a~"e (9B.2)

with ¥, and V, the number of sites in 6 and Q respectively. Alternatively,
one might give equal weight to all distributions 8 with precisely p¥V,, (assumed
to be an integer) sites, and zero weight to all others. Griffiths and Lebowitz
(1968) showed that these two choices for P(f) give identical results in the
thermodynamic limit ¥, = co. The limit exists, assuming the usual restric-
tions on the shape of the region Q and the decay with distance of the J;;
(Section II, Theorem 2.1), and the limiting free energy f is a continuous
function of p. They also showed that for suitable Ising ferromagnets the
Peierls argument (Section V) could be extended to the case of a random
system to demonstrate the existence of a phase transition, a spontaneous
magnetisation, at sufficiently low temperatures, provided p is sufficiently
close to 1. And they derived certain analyticity properties of the free energy
analogous to results obtained in ordinary lattice models. The results on
analyticity of both the free energy and correlation functions based on equa-
tions for the correlation functions (Section II1.C) were extended to this type
of random system by Gallavotti (1970).

There would seem to be no particular difficulty in extending these results
Lo models in which various interaction terms in the Hamiltonian, e.g., values
of the Jy;, are altered “at random™ (rather than sites being occupied at
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random).} However, a systematic study of other possibilities, such as the
probability of occupancy of a given site depending on occupancy of neigh-
bouring sites, has not yet appeared.

One rather peculiar property of random Ising ferromagnets with pair
interactions of finite range and sites occupied at random was pointed out by
Griffiths (1969a). He showed that for 0 < p <1, the limiting free energy is
not an analytic function of H at H = 0, at any temperature below the critical
temperature, (6B.3), of the corresponding regular model p =1. This cir-
cumstance arises because at these temperatures there are zeros on the Lee-
Yang circle (Section IV.B) arbitrarily close to z =1.

C. Ciritical point inequalities

1. Introduction

In certain systems it is found that the discontinuity in density, entropy, mag-
netisation, or the like, which characterises a first-order phase transition,
goes continuously to zero as a function of an appropriate thermodynamic
parameter, typically the temperature. The point in the space of thermo-
dynamic variables where the discontinuity first vanishes, that is, where the
first-order phase transition disappears, is called a “‘critical point”.} At
present there do not seem to be any examples of model systems in which one
can prove the existence of a critical point apart from an explicit calculation
of the thermodynamic properties.§ Consequently the analysis of critical
points (apart from exactly soluble cases) proceeds, of necessity, on the basis
of a large number of more or less plausible assumptions which are difficult
to justify on the basis of ““first principles’’. Nevertheless, one can show that
certain assumptions are inconsistent with known properties (e.g., the con-
vexity of thermodynamic functions) of model systems, and in this negative
sense apply “‘rigorous results’ in the theory of critical phenomena.

2. Critical point exponents

At the present time it is customary in the study of critical phenomena to
assume that various quantities of interest have a simple power-law behaviour
at or near the critical point. For example, in a simple ferromagnet in

1 For example, the random systems considered by McCoy (Chapter 5, Vol. 2).

1 For detailed expositions of the theory of critical phenomena, see Fisher (1967¢), Stanley
(1971), and articles in this publication by Jasnow and Fisher (Vol. 4), and Buckingham

(Vol. 2, Chapter 1).

§ There are, of course, models, such as the Ising ferromagnet on a simple cubic lattice, for
which one can prove the existence of a discontinuity in magnetisation at low temperatures
and its absence at high temperatures (Section V.B and Section III.C), and even that the
di continuity is a decreasing (or at least nonincreasing) function of temperature (Section
VI.B). There is no proof, however, that it goes to zero continuously.
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which the first-order phase transition takes place at H = 0, one assumes that
the spontaneous magnetisation M, behaves asymptotically as

M, ~ (.- T) (OC.D)

as T approaches the critical temperature T, from below, with 8 a positive
number. To be more precise, one assumes that the limit
= lim {(ogM,)flog(T.—T)} (9C.2)
T—Te—
exists. In the discussion below we shall always employ the shorter and more
expressive notation (9C.1), with the understanding that (9C.2) provides a
more precise definition.

Definitions of exponents entering various inequalities (Section C.4 below
and Table II) are found in Table I. The notation is as follows: C is a specific
heat (subscripts H and V for constant field and constant volume), H the
magnetic field, M the magnetisation, y = (0M/0H) the susceptibility, S
the entropy, p the pressure, p the density, K, the isothermal compressibility.
A subscript ¢ denotes the value of a quantity at the critical point.

In the case of Ising and other ferromagnets for which the zeros of the
partition function fall on the unit circle z = exp (i6) (Sections IV.B, C), it
is plausible to suppose that for T > T, the density of zeros vanishes (in the
thermodynamic limit) in a region —0, (T) < 6 < 0, (T) centered at 8 = 0,
and to use the (assumed) dependence of 6, on T,

0o ~ (T-T)", (9C.3)

to define the “gap” index A. This definition follows Gaunt and Baker (1970)
rather than Fisher (1967c).

The quantities £ and X for ferromagnets are defined as follows: Let
‘¢(r) be the magnetisation-magnetisation cortrelation function, which in the
case of an Ising model on a regular lattice is equal to

€(r) = <o; o;) — <o) 0, (9C.4)

if r=r; —r; (assuming the correlation functions are well defined in the
thermodynamic limit and invariant under translations). More generally, one
may replace o; with o,; or s,; for a Heisenberg or Ising model of spin >1/2.
T'he correlation length & is defined by

& = g Ir|? ‘K(r)/zr: %(r) (9C.5)

nssuming that the sums converge.t Note that this definition (Fisher, 1969)

| One may also define § in terms of moments other than the second moment. See Fisher
{1969), ’
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differs from another common definition of correlation length (Fisher, 1967c)
in terms of the exponential decay of correlations. The two definitions may in
practice lead to the same exponent v, but this has not been proved. The
quantity X(R) is defined by

XR) = Y €@ (9C.6)

Ir| <R

TABLE 1. Definitions of Critical Point Exponents®

Q A B D
Quantity Variable Exponent Region
Ferromagnets
Cy T —T, —a H=0,T >T,
Cy T,—T —o H=0,T<T,
M, T,—T B H=0,T <T,
x T —T, —y H=0,T >T,
X T,—-T -9’ H—-0+,T <T,
H M P H>0,T =T,
H M Oy H>0,8=S§,
S, — S M 1+¢ H>0,T =T,
T —T, M o H>0,8=S8,
Cy H —¢ H>0,T=T,
@>*1 MjoH*"* 1), T —T, — 7, H=0,T >T,
6, T —T, A T >T,
¢ T —T, —v H=0,T >T,
X R 2—1 H=0,T=T,
Fluids

Cy T,—T —ao p=p.,T <T,
oL — Pe T,—T B coex., T < T,
Pe — Pg T,—T B coex., T < T,
K; T, —T -7’ coex., T <T,
‘p “‘pc‘ |p - pc| 0 T = Tc
d? p/dr? T,—T -0 coex.,T < T,

% Read as follows: “Q varies asymptotically near the critical point as 4 to the power B,
Q ~ A®, along the curve D”, Definitions of the symbols in columns Q, 4, and D are given
in the text.
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In the “fluids’ section of Table I, “coex” refers to the situation in which
liquid and vapour phases coexist, with densities p, and p; (G = gas),
respectively. There is no reason to suppose a priori that liquid and vapour
densities approach the critical density p, with the same exponent f, and
indeed the analysis leading to the inequalities of Table II has sometimes
been carried through allowing for the possibility that B, # B, (Griffiths,
1965a). Likewise one could define separate exponents y;’ and y;’, 6, and dg.
At present the available experimental data seem to be consistent with equal
exponents on the liquid and vapour side of the critical point, and since it
simplifies rather considerably the thermodynamic analysis, we shall simply
assume equality.

The definitions for a fluid of a number of exponents defined for ferro-
magnets have been deliberately omitted in Table I (in several cases the
definitions are given by Griffiths, 1965a). These exponents are either of no
experimental interest in a fluid (e.g. {), or the assumptions behind the cor-
responding inequalities (as in the case of A) seem very difficult to justify in
the case of a fluid.

A final word of caution is necessary. The various inequalities in Table II
have been obtained with the assumption that the exponents «, B, y, etc. are
non-negative. In certain proposals for thermodynamic functions and in the
analysis of certain experimental measurements one encounters negative values
for o or o, signifying that the heat capacity rises to a finite cusp rather than
diverging to infinity. In these cases the inequalities of Table II are still valid
provided one defines « and o’ using the analog of (9C.2), i.e., sets them equal
to zero if the heat capacity approaches a finite limit at the critical point. Also
when the heat capacity has a logarithmic divergence, o (or «’) is zero.

3. The Rushbrooke inequality

As a typical example of the type of analysis which yields the inequalities in
Table II, we present (slightly modified) the argument by which Rushbrooke
(1963) obtained the first inequality for ferromagnets. The magnetisation and
cntropy per site in a typical lattice model of a ferromagnet are related to the
thermodynamic limit of the free energy f(H, T) by

M = —0f/0H, S = —of/dT. (9C.7)

The fact that fis concave in both variables together (Sections I1.B.4 anci C.4)

implies that
0*f 0*f o*f \2
( 6H2) ( aTZ) > (aHaT ) OC3)

wherever the second partial derivatives exist and are continuous (Hardy
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et al., 1952, p. 80). One expects this to be the case for H > 0, and the
inequality (9C.8) is equivalent to

x CalT > (OM[0T)* Cer)
(note that Cy is T(0S/0T)y).

TABLE II. Inequalities for Critical Point Exponents

Inequalities Hypotheses  Reference
Ferromagnet
Lo +28+7y =2 A Rushbrooke (1963)
2.0 +BA +6) =2 A Griffiths (1965a)
3.9 =BG —1) B, C Griffiths (1965a)
4 2 —-aN{+1=2(0 —a) A, B Griffiths (1965a)
520 4+0p +1 =6 A Coopersmith (1968)
6.6 > 6, A Griffiths (1965a)
7.8, > min {5, + o} A, B Griffiths (1965a)
8. 2—wao=0,+1 A, B Griffiths (1965a)
9.96, +1) > Q2 -G, —1) A,BC Griffiths (1965a)
10. Pi41 + Pi-1 = 2y; E F Baker (1968b)
1LLA = 9; — 9i-1 E, F Gaunt and Baker (1970),
Baker (1971)
12.A0 - 1) > 96 B, E Gaunt and Baker (1970),
Baker (1971)
13.y<2—nv G Fisher (1969)
14.2 —p <d@6 —D/0+1) G Buckingham and Gunton (1969)
Fisher (1969)
15.2 —n <dy'/(2B + 7)) G Buckingham and Gunton (1969)
Fisher (1969)
Fluid
Fl.o/ +28+9y =2 A Fisher (1964b)
F2.o/ + B(1 +6) =2 A Griffiths (1965a)
F3.y =2 B0 -1 D Liberman (1966)
F4. o' + >0 A Griffiths (1965a)
F5.24+ad0>(1+6)0 A Griffiths (1965a)

Note: If a>0a, inequalities 4, 6, 7, and 8 imply that d,=4.
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If we now let H— 0+ at a fixed T < T,, the right hand side of (9C.9)
becomes (dM,/dT)?. Using the asymptotic dependences indicated in Table I,
we have |

(T,—T)™* " > (T,—T)**~? (9C.10)
as T,— T approaches zero, and therefore
—o -y <2 -2, (9C.11)

the Rushbrooke inequality.

It is evident that the inequality (9C.11) is based on the ‘‘stability’’ or
“convexity’’ condition (9C.8), and consequently convexity is listed in the
“hypotheses’ column of Table II. However, the reader with some concern
for the finer points of mathematical argument will note that a number of tacit
assumptions occur in the chain of reasoning. For example, one assumes the
left and right hand sides of (9C.9) actually approach the correct limits as
H — 0+, and that from M, ~ (T,— T)? one can infer that

dM,/dT ~ (T,—T)*~ 1. (9C.12)

One could, no doubt, turn these tacit assumptions into formal hypotheses,
though it is not clear at the present stage of development of the theory of
critical phenomena that there is much to be gained from doing so. Theories
of critical phenomena simply assume that the various functions are not
too pathological, and it is within the context of these theories that the in-
equalities of Table IT play a useful role. Although there have been some
attempts to give explicit expression to these tacit assumptions (see, e.g.,
Griffiths, 1967c), we are not aware of any very thorough investigations of
the problem.

4. Summary of exponent inequalities

Table II lists rigorous inequalities for ferromagnetic and fluid critical point
exponents. Hypotheses used in deriving the different inequalities, indicated in
the second column, are as follows:

(a) A, Thermodynamic stability or convexity

That is, f(H, T) is a concave function of both variables for ferromagnets,
and p(u, T) is a convex function of both variables for fluids. In regions where
the second derivatives exist, this is equivalent to the requirements

Cu =0, x=0 (9C.13)
for ferromagnets, or
Cy =0, Ky =20 (9C.14)

for fluids (Fisher, 1967c, p. 644).
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(b) B, Monotonicity of M (or H) as a function of temperature

OH oM
] = = S . .
(aT )M 0 for M >0 or (aT)H 0 for H>0. (9C.15)

The two inequalities are equivalent provided (9C.13) is satisfied.

(¢) C, Decrease of susceptibility with field
(0x/0H)y < 0 for H > 0. (9C.16)

This is equivalent to the statement that M is a concave function of H for
H > 0.

(d) D, For a fluid, the inequality
0*ploVOT <0 (9C.17)
holds in the vicinity of the critical point.

(¢) E, The Lee—Yang theorem applies:
Zeros of the partition function are on the unit circle in the complex
z =exp (— 2 H) plane apply.

(f) F, The y; (Table I) are monotone in i
0 <79 <%ty (9C.18)

(g) G, See Buckingham and Gunton (1969) and Fisher (1969) for the necessary
assumptions, which can all be justified for Ising models with ferromagnetic
interactions.

The status of these hypotheses for various models is as follows. Almost all
the model systems for ferromagnets and fluids whose critical properties
have been investigated satisfy the convexity requirements, (A4). It is,
perhaps, worth pointing out that (9C.13) is not a universal property of
real materials, since diamagnetism does occur in nature! The other hypo-
theses have been proved only for a restricted class of models. Thus (B),
while it is observed empirically in real ferromagnets, has only been proved
rigorously for Ising ferromagnets and other models satisfying the GKS
inequalities (Section VI.B.3). And (C) has been proved only for Ising ferro-
magnets with pair interactions (Griffiths et al., 1970). The hypothesis (d) is
not unreasonable on the basis of empirical observations on real fluids, but has
never been established for any statistical model. Hypothesis (E) has been
proved for certain Ising and Heisenberg models with pair interactions (Sec-
tions IV.B, C), while (F), while it has not been proved, seems to be supported
by numerical investigations on various models. As for (G), essential use is
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made of the GKS inequalities (Section VI) and the ‘““fluctuation relation’’
which gives the susceptibility as a sum of the pair correlation functions,
(9C.4). Fisher (1969) has used similar hypotheses to obtain certain in-
equalities for exponents connected with ‘“‘energy—energy’’ correlations.

As well as the hypotheses explicitly indicated in Table II, most of the
inequalities involve some tacit assumptions (see remarks in Section 3 above)
to the effect that the mathematical functions involved are not too pathologi-
cal. In particular, there is no rigorous justification for the rather simple
asymptotic behaviour assumed (that is, that (9C.2) and the corresponding
limits for other exponents actually exist) in defining the exponents, or the
assumption that liquid and vapour exponents for fluids are the same.
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