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We study the noise-driven escape of active Brownian particles (ABPs) and run-and-tumble particles
(RTPs) from confining potentials. In the small noise limit, we provide an exact expression for the escape
rate in terms of a variational problem in any dimension. For RTPs in one dimension, we obtain an explicit
solution, including the first subleading correction. In two dimensions we solve the escape from a quadratic
well for both RTPs and ABPs. In contrast to the equilibrium problem we find that the escape rate depends
explicitly on the full shape of the potential barrier, and not only on its height. This leads to a host of unusual
behaviors. For example, when a particle is trapped between two barriers it may preferentially escape over
the higher one. Moreover, as the self-propulsion speed is varied, the escape route may discontinuously
switch from one barrier to the other, leading to a dynamical phase transition.
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Activated escapes from metastable states play a major
role in a host of physical phenomena, with applications in
fields as diverse as biology, chemistry, and astrophysics
[1,2]. They also play an important role in active matter,
where they control nucleation in motility-induced phase
separation [3], activated events in glassy self-propelled-
particle systems [4,5], or escapes through narrow channels
[6]. However, despite recent progress [7,8], little is known
about the physics that controls the rare events leading to the
escape of an active system from a metastable state.
In equilibrium, most of our intuition regarding such

events is based on Kramers seminal work [9] on Brownian
particles (see Ref. [10] for a review). When the thermal
energy is much lower than the potential barriers, there is a
timescale separation between rapid equilibration within
metastable states and rare noise-induced transitions
between them, a simple physical picture which is at the
root of the modern view on metastability [11,12]. In this
limit, the mean escape time over a potential barrier of
height ΔV is given by hτi ∼ expðΔV=kBTÞ. At the expo-
nential level, the crossing time over a potential barrier only
depends on its height.
To develop a corresponding intuition for activated

processes in active matter, we follow Kramers and consider
the dynamics of an active particle confined in a metastable
well described by a potential V:

_x ¼ −μ∇V þ vuðθÞ þ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ: ð1Þ

Here, x is the position of the particle, v its self-propulsion
speed, and μ its mobility. The orientation of the particle
uðθÞ evolves stochastically with a persistence time 1=α.

Here, θ is a generalized angle parametrizing the d − 1
dimensional unit sphere. Finally, ξðtÞ is a Gaussian white
noise which may stem from either thermal fluctuations, in
which case D ¼ μkBT, or from fluctuations of the activity.
As we show below, the escape of such an active particle
from a metastable state is very different from the equilib-
rium case, leading to a host of interesting phenomena.
For example, direct simulations of Eq. (1) show that
active particles confined between two barriers may pref-
erentially escape over the higher one, depending on the
self-propulsion v (see Fig. 1).
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FIG. 1. Active escape from a metastable well confined by two
barriers of different heights (left). We measured the fraction of
particles escaping over the higher barrier, phigh, and over the
lower one, plow, depending on the value of v and with decreasing
values ofD, of Eq. (1). The right panel shows that, as v increases,
the most likely escape route switches from the lower barrier to the
higher one. The switch between preferred barriers is manifested
as a dynamical phase transition in the small-noise limit. This can
be seen as the transition becomes sharper when D is decreased
(blue: D ¼ 0.08, red: D ¼ 0.0675, magenta: D ¼ 0.058, green:
D ¼ 0.051, colors online). Details of the potential are given in
Ref. [13].
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In what follows, we provide a complete solution of the
Kramers problem for active particles described by Eq. (1),
in any dimension, using a path-integral formalism. In
contrast to existing works on first-passage times [14–16],
we focus on cases in which the potential is strictly
confining at D ¼ 0 and the barrier can only be crossed
using fluctuations. We refer to such cases as confining
potentials. We give an explicit expression for the mean
escape time in terms of a variational problem for run-and-
tumble particles (RTPs) [17,18] and active Brownian
particles (ABPs) [19], the latter being studied only in
d ≥ 2 dimensions. In one dimension, RTPs had previously
been studied in the limits α → 0 and α → ∞ [7]; Here, we
provide the full solution of the activation time for RTPs for
all α, including its subexponential prefactor. In cases with
multiple competing reaction paths, our results provide the
selection principle for the most likely escape route. In
particular, we explain the dynamical phase transition
observed in Fig. 1.
For confining potentials, it is natural to divide the barrier

into separate regions depending on whether the force j∇Vj
is larger or smaller than the propulsion force fp ¼ v=μ.
Consider, for instance, the escape in one dimension from a
metastable well; see Fig. 2. We can identify four different
regions separated by three points fC1; C2; C3g satisfying
jV 0ðCiÞj ¼ fp. In regions (i) and (iii), when x ≤ C1 or
C2 ≤ x ≤ C3, the particles feel a force −V 0 smaller in
magnitude than fp. In the D → 0 limit the contribution of
the noise ξðtÞ to the dynamics can be neglected. In region
(ii), where C1 ≤ x ≤ C2, the particles cannot climb the
potential without the noise ξðtÞ. Crossing this region is

therefore a rare event which controls the escape from the
metastable state. In region (iv), where x > C3, the particles
would need the noise to come back to region (i), were they
to reverse direction. This is a rare event and the particle has
thus effectively crossed the barrier once it has reached C3.
The generalization of these points to lines or surfaces in
higher dimensions (denoted Ci) is straightforward and an
example is displayed in Fig. 2 [20]. Note that the problem is
activated only if region (ii) exists. Otherwise, the problem,
as considered, e.g., in one dimension in Ref. [21], is a first-
passage problem with no instanton physics. The activated
process only corresponds to moving across region (ii) so
that the crossing probability is given, to leading order, by
histories connecting points on C1 and C2. To obtain the
escape time we then write the transition probability
Pðx2; tjx1; 0Þ to be at x2 ∈ C2 at time t starting at x1 ∈
C1 as a path integral in its Onsager-Machlup form [22]

Pðx2; tjx1; 0Þ ¼
Z

x2

x1

D½xðtÞ; θðtÞ�e−ð1=DÞA½x;θ�P½θðtÞ�: ð2Þ

P½θðtÞ� is the probability of a history of the angle θ.
For example, ABPs in two dimensions with rotational

diffusivity α lead to P½θðtÞ� ∝ e−
R

t

0
_θ2=ð4αÞdt0 . In Eq. (2), the

action A½x; θ� is given by

A½x; θ� ¼ 1

4

Z
t

0

k _xþ μ∇VðxÞ − vuðθÞk2dt0: ð3Þ

We first integrate expression (2) over the paths θðtÞ to
obtain an effective action for the probability of a path xðtÞ.
In the limit D → 0, we use a saddle-point approximation in
Eq. (2) to get

Z
D½θðtÞ�e−ð1=DÞA½x;θ�P½θðtÞ� ≍

D→0
e−ð1=DÞA½x;θ̃�; ð4Þ

where ≍ stands for logarithmic equivalence and θ̃ðtÞ is the
path satisfying the variational problem

A½x; θ̃� ¼ inf
θ

�
1

4

Z
t

0

k _xþ μ∇VðxÞ − vuðθÞk2dt0
�
: ð5Þ

Note that P½θðtÞ� is a subdominant contribution and any
cost to the action arising from it can be ignored to leading
order [23]. Clearly, the optimum requires uðθÞ to be in the
same direction as _xþ μ∇VðxÞ so that

uðθ̃Þ ¼ _xþ μ∇VðxÞ
k _xþ μ∇VðxÞk : ð6Þ

Using Eqs. (6) and (3), we find that the transition
probability between x1 and x2 is dominated by paths that
minimize the action
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FIG. 2. Schematic representation of the active escape problem.
Top: Escape in one dimension over a barrier, region (i) corre-
sponds to the well whereas regions (ii)–(iv) make up the barrier.
All are defined in the text. Bottom: The color code represents the
height of the potential. The barrier is located around in the yellow
region.
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A½x� ¼ 1

4

Z
∞

−∞
ðk _xþ μ∇VðxÞk − vÞ2dt0; ð7Þ

where we have sent the limits of the integral to �∞, using
the fact that extremal trajectories start and end at stationary
points (see, for instance, Refs. [24,25]). Finally, the escape
time is given by

hτi ≍
D→0

e
ϕ
D;

ϕ ¼ inf
fx1∈C1;x2∈C2g

inf
xðtÞ

A½xðtÞ�: ð8Þ

The inner minimization corresponds to optimizing the
action over different paths; it is realized by an instanton
xðtÞ which connects x1 and x2. The outer minimization
corresponds to optimizing over all possible initial and final
positions of the instanton. Equation (8) provides a full
solution to the escape problem for both ABPs and RTPs as
a variational problem. It generalizes the Kramers law and
we discuss the physics of the quasipotential barrier ϕ
below. Note that when v ¼ 0 the minimizers of the action
are _x ¼ μ∇VðxÞ and we recover the usual Kramers law
with ϕ ¼ μΔV, where ΔV is the minimal potential differ-
ence across the barrier. We now turn to apply our results to
a general one-dimensional potential barrier and to an
elliptic well in two dimensions.
RTPs in one dimension.—Here, uðθÞ is replaced by a

binary variable u ¼ �1 which flips with rate α=2. As in
Fig. 2, the barrier is located on the right of the metastable
well. x1;2 are then given by C1;2. Clearly, the minimal
action is obtained by particles with u ¼ 1: particles that
reverse their motion in the middle of the instanton are
exponentially less likely to cross the barrier. The action
then reduces to

A½x� ¼ 1

4

Z
∞

−∞
½_xþ μV 0ðxÞ − v�2dt0: ð9Þ

It is thus equivalent to an equilibrium problem in an
effective titled potential φðxÞ=μ; the instanton solution
obeys

_x ¼ ∂xfμ½VðxÞ − VðC1Þ� − vðx − C1Þg≡ ∂xφðxÞ; ð10Þ

which gives, for the quasipotential barrier introduced in
Eq. (8),

ϕ ¼ μ½VðC2Þ − VðC1Þ� − vðC2 − C1Þ: ð11Þ

Our predictions (8) and (11) are verified in Fig. 3 using
direct simulation of Eq. (1) with a single barrier.
Using asymptotic techniques [13,26], we also obtain the

leading subexponential amplitude of the transition time (8).
For simplicity we consider a boundary condition in which
the potential is flat on the left of the barrier and the density

of particles in that region is ρ0; other boundary conditions
are discussed in Ref. [13]. The mean time between particles
crossing the barrier is then given by hτi ∼

D→0
Aeðϕ=DÞ, where

A¼ 2πe−ðα=2ÞT inst

ρ0v2Γð1− α
2k2
ÞΓð α

2k1
Þ
½Dv2k1�½ðk1−αÞ=2k1�
½Dv2 jk2j�½ðk2−αÞ=2k2�

×

R C3

C2
½α−μV 00ðyÞ�eαF

R
y

C2
fμV 0ðzÞ=½v2−(μV 0ðzÞ)2�gdz

dy

e−αF
R

C1
−∞

fμV 0ðyÞ=½v2−(μV 0ðyÞ)2�gdy
: ð12Þ

Here, T inst ¼ F
RC2

C1
ðdy=∂yφÞ is the duration of the instan-

ton, ki ¼ μV 00ðCiÞ, ΓðxÞ is the Euler Gamma function,
and F denotes the finite part of the integral, defined by
removing the logarithmic divergences occurring at C1 and
C2, e.g.,

F
Z

C1

−∞

μV 0ðyÞ
v2 − ½μV 0ðyÞ�2 dy

¼ lim
x→C1

�Z
x

−∞

μV 0ðyÞ
v2 − ½μV 0ðyÞ�2 dy

þ 1

2k1
log

�
k1ðC1 − xÞ

v

��
: ð13Þ

The term e−ðα=2ÞT inst has a simple interpretation: it is the
probability that the particle does not flip along the
instanton. Note that the v ¼ 0 limit is singular: all histories
of uðtÞ are then equally likely, a degeneracy which
otherwise does not exist.
Equations (11) and (13) provide an explicit solution to

the Kramers problem in one dimension. Note that the effect
of the activity cannot be cast into a simple description with
an effective temperature. Both ϕ and the prefactor indeed
depend on the full functional form of the potential V.
Dynamical phase transition.—We now show how the

analysis of the quasipotential accounts for the nontrivial
choice of escape routes when the particle is trapped
between two potential barriers. In the small D limit, the
escape time is controlled by the quasipotential (11) of each
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FIG. 3. We compute the mean-first passage time hτi over a
confining barrier. Details of the potential shown in the left panel
are given in Ref. [13]. The right panel shows the validity of our
generalized Kramers law for several values of v ¼ 1.0, 1.5, 2.0,
and 2.5.
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barrier, which we can study separately. For the right barrier,
the explicit dependence of ϕ on v reads

ϕðvÞ ¼ μfV½C2ðvÞ� − V½C1ðvÞ�g − v½C2ðvÞ − C1ðvÞ�:
ð14Þ

When v ¼ 0, we recover the standard Kramers result
ϕð0Þ ¼ μ½VðC2Þ − VðC1Þ�. Using μV 0ðC1Þ ¼ μV 0ðC2Þ ¼
v, one has ϕ0ðvÞ ¼ −ðC2 − C1Þ, which implies that
ϕ is a decreasing function of v. When v > vcr≡
maxxfμjV 0ðxÞjg, the particle can cross the barrier without
thermal activation so that ϕðvcrÞ ¼ 0. ϕðvÞ thus decreases
from the equilibrium v ¼ 0 value to zero. The initial
decrease of the escape time is given by ϕ0ð0Þ ¼
−½C2ð0Þ − C1ð0Þ�≡ −l, which is nothing but the distance
between the maxima and the minima of the potential V, i.e.,
the width of the barrier. The same construction holds for the
second barrier.
Next, consider the two potential barriers VR;LðxÞ of equal

height described in Fig. 4. The right barrier is wider,
lR > lL, but has a larger maximal slope than the left
barrier so that vRcr > vLcr. To leading order, the escape rates
over the two barriers for v ¼ 0, ϕLð0Þ and ϕRð0Þ, are equal.
Following the above discussion, ϕRðvÞ decreases faster
than ϕLðvÞ near v ¼ 0 because the right barrier is wider
than the left one: for small v, the particle is more likely to
escape over the right barrier. ϕRðvÞ, however, vanishes at a
value vRcr larger than vLcr due to the existence of a steeper
portion in the right barrier. For large v, the escape is thus
more likely through the left barrier. Hence, there exists a
critical self-propulsion speed at which the most likely
escape route changes discontinuously. The physics pre-
sented in Fig. 1 can be understood from the above
discussion, the sole difference being that the escape rates
are different at v ¼ 0 due to the different barrier heights.

In theD → 0 limit, the sigmoid function presented in Fig. 1
hence converges to a discontinuous step function. In fact, it
is straightforward to see that one could also observe not
one but two successive dynamical phase transitions if the
larger and steeper barrier were also higher. Interestingly,
the dependence of the escape time on v can be used to
sort active particles depending on their velocities (See
Supplemental Material [13], Movie).
Escape from two-dimensional elliptic potentials.—We

now consider the escape of active particles from a two-
dimensional potential well of the form

Vðx; yÞ ¼ λm
x2

2
þ λM

y2

2
; ð15Þ

with λM > λm (for an analysis of the steady-state distribu-
tion for the case λm ¼ λM, see Ref. [27]). We assume that
particles escape when they reach a given height
Vðx; yÞ ¼ V0. This level line C replaces C2 of the general
discussion, see Fig. 5.
The most-probable escape routes can be computed by

solving the Euler-Lagrange equations for the action given
in Eq. (7), as detailed in the Supplemental Material [13].
Following the previous argument, we introduce
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FIG. 4. The first panel displays the trap with two asym-
metric escape walls VL and VR. The second panel displays the
two quasipotentials ϕLðvÞ and ϕRðvÞ as functions of v (further
explanations in the text). This illustrates the dynamical phase
transition where v is the control parameter. For v ¼ 0, particles
have the same probability of escape (at the exponential level)
through both sides. For 0 < v < vtr (hatched area), particles
escape to the right, and for vtr < v they escape to the left.
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FIG. 5. Active escape from an elliptic trap (top). Activated
escapes have to go from the curve C1 (purple) up to the trap
boundary C (red) defined by VðxÞ ¼ V0. Color encodes the
density of particles during the last δt ¼ 0.05 before the escapes,
highlighting the preferential route through the apices of the
elliptic well. Bottom: numerical (dots) and analytical (curve)
computation of the quasipotential φ along C (up to a trivial
geometric Jacobian) parametrized by θ≡ arctanðy=xÞ. As ex-
pected, the quasipotential reaches a minimum on the major axis
(direction ex). For an equilibrium system, the quasipotential
would be flat in the D → 0 limit.
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φðxfÞ≡ inf
xðtÞ

fA½xðtÞ�jxð−∞Þ ∈ C1;xð∞Þ ¼ xfg; ð16Þ

which yields, at the exponential level, the probability to
reach any point xf on the boundary. This log probability,
which we compute in Ref. [13], is plotted in Fig. 5 as
a function of the angular parametrization of xf, and
compared with numerics. Interestingly, the quasipotential
is not constant over the boundary: the particles have a
much larger probability to escape in the direction of the
major axis of the ellipse. This is the most striking
difference with the equilibrium problem: For passive
Brownian particles, the quasipotential is φðxÞ ¼ μVðxÞ,
so that particles have an equal probability (at the
exponential level) to escape through any point along
the boundary C. Activity thus breaks the equilibrium
quasipotential symmetry.
Furthermore, one can compute explicitly the full expres-

sion of ϕ given by the minimum of the function φðxfÞ
along C:

ϕ ¼ μV0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2μ2λmV0

s !2

: ð17Þ

The escape time from the elliptical well is then given
by hτi ≍ expðϕ=DÞ. It solely depends on the potential
height, the particle speed, and the semi-axis corre-
sponding to the most likely exit direction. As expected,
we recover the standard equilibrium result ϕ ¼ μV0

when v ¼ 0.
By providing a full solution to the Kramers problem for

both ABPs and RTPs in any dimensions, we have high-
lighted how the physics of these nonequilibrium systems
is very different from that of the equilibrium problem.
In particular, the activation barrier, encoded in the quasi-
potential, is not solely defined by the height of the potential
well. Instead, it corresponds to the region where the self-
propelling force fails to overcome the confining one,
leading to activation paths and times that depend in a
nontrivial way on both the self-propelling speed and the full
shape of the potential, and to a wealth of unusual features.
Our results also highlight why an effective equilibrium
approach is inappropriate. Beyond the case addressed here
of an external potential, escape problems play an important
role in a host of collective phenomena, from nucleation to
glassy physics. It will thus be very interesting to see how
the phenomena uncovered in this Letter play a role in these
more complicated systems.
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