EE5110: Probability Foundations for Electrical Engineers July-November 2015

Lecture 25: Moment Generating Function

Lecturer: Dr. Krishna Jagannathan Scribe: Subrahmanya Swamy P

In this lecture, we will introduce Moment Generating Function and discuss its properties.

Definition 25.1 The moment generating function (MGF) associated with a random variable X, is a func-
tion, Mx : R — [0,00] defined by Mx(s) = E [e*¥].

The domain or region of convergence (ROC) of Mx is the set Dx = {s|Mx(s) < oco}. In general, s can
be complex, but since we did not define expectation of complex valued random variables, we will restrict

ourselves to real valued s. Note that s = 0 is always a point in the ROC for any random variable, since
Mx(0) = 1.

Cases:
e If X is discrete with pmf px(x), then Mx (s) = > e**px(x).
T
e If X is continuous with density fx(-), then Mx(s) = [ e** fx(z) d.

Example 25.2 Ezponential random variable

fx (@) = pe™*, w20,

o0
L dfs <,
Mx(s) = /eszﬂe_’”’dm: = Y "
400, otherwise.
0

The Region of Convergence for this example is, {s|Mx(s) < oo},i.e., s < p.

Example 25.3 Std. Normal random variable

1 a2
fx(x) = 5=¢ " T €R,
1 r sz, =22
Mx(s) = NoTS eTe 2 dr
.5‘2 B
= ez, selR

The Region of Convergence for this example is the entire real line.

Example 25.4 Cauchy random variable

1
I =iy v R
17 1 1,  ifs=0
Mx(s)== [ €°* dr=<"" ’
x(s) T / 14 22 {—|—oo, otherwise.

— 00

The Region of Convergence for this example is just the point s = 0.
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Remark 2: The above examples can be interpreted as follows.

e In Example 25.2, we have the product of two exponentials. Thus, the MGF converges when the product
is decreasing.

.1}2 . .
e In Example 25.3, there is a ’competition’ between e~z and e®**. Since the first term from the Gaussian
decreases faster than e®* increases (for any s), the integral always converges.

e In Example 25.4, for s # 0, an exponential competes with a decreasing polynomial, as a result of which
the integral diverges.

It is an interesting question whether or not we can uniquely find the CDF of a random variable, given the
moment generating function and its ROC. A quick look at Example 25.4 reveals that if the MGF is finite only
at s = 0 and infinite elsewhere, it is not possible to recover the CDF uniquely. To see this, one just needs to
produce another random variable whose MGF is finite only at s = 0. (Do this!) On the other hand, if we can
specify the value of the moment generating function even in a tiny interval, we can uniquely determine the
density function. This result follows essentially because the MGF, when it exists in an interval, is analytic,

andrhence possessesisomemicerproperties: The proof of the following theorem is rather involved, and uses

the properties of an analytic function.

Theorem 25.5 (Without Proof)

i) Suppose Mx(s) is finite in the interval [—e, €] for some € > 0, then Mx uniquely determines the CDF
of X.

it) If X and Y are two random variables such that, Mx(s) = My(s) Vs € [—€,€|,e > 0 then X and Y
have the same CDF.

25.1 Properties

1. Mx(0) =1.

2. Moment Generating Property: We shall state this property in the form of a theorem.

Theorem 25.6 Supposing Mx (s) < 0o for s € [—¢, €], € > 0 then,

d
—M =E[X]. 25.1
TMx(s)| _ =EIX] (25.1)
More generally,
d—mM (s) =E[X™]; m>1
ds™ X s=0 ’

Proof: (25.1) can be proved in the following steps.

d d (a) . d

=M — _E sX:E_sX :EXSX

dS X (8) dS [e ] [ds € ] [ € ]?

where, (a) is obtained by the interchange of the derivative and the expectation. This follows from the

use of basic definition of the derivative, and then invoking the DCT; see Lemma 25.7 (d).
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Lemma 25.7 Suppose that X is a non-negative random variable and Mx(s) < oo, Vs € (—o0,al,
where a is a positive number, then

(a) E[X*] < oo, for every k.
(b) E[X*esX] < o0, for every s < a.

th

(c) &5=1 < XeMX.

h . ehX1_
(d) E[X] = Ellimpo d );(1_1] = limpyo W'

Proof: Given that X is a non-negative random variable with a Moment Generating Function such
that Mx (s) < oo, Vs € (—00, al, for some positive a.

(a) For a positive number a, 2% < e, Vk € Z* U {0}. Therefore, E[X*] = [2*dPx < [e*dPx.
However, [e®dPx = Mx(a) < oo. Therefore, E[X*] < oco.

(b) For s < a, Je > 0 such that Mx(s+¢€) < oo = [e5Te“dPy < co. But since € > 0, as z — 00,
¥ < e®. Therefore, E[XFesX] = kaeszdIP’X < [efTedPy < 0o = E[X%*esX] < c0.

ehX—1

(¢) To prove that <= < Xeh¥.
Let hX = Y. Therefore, re-arranging the terms, we need to prove that e¥ — Ye¥ < 1. Or
equivalently, it is enough to prove that, g(Y) = ¥ (Y — 1) > —1.
¢(Y) has a minima at Y = 0, and the minimum value, i.e., g(0) = -1.
=eV (Y -1)>-1.
Hence proved.
hX _q

(d) Define X, = <
limp o X = X i.e. Xj, — X point-wise. Since E[X%e*X] < oo is true, when s = h and k = 1, we get
E[Xe"X] < 0o. Since X, is dominated by X e E[Xe"¥] < oo and limy 0 X, = X, applying DCT

we get E[X] = E[limp o X3] = E[limy, 0 eh};*l] = limp o E [ehzfl} = limp o %;]_1. Therefore,
E[X] = Eflimpo £571] = limy o HE 1=
Hence proved.

| |

3. IfY = aX +b, a,b € R, then My(s) = e®*Mx(as). For example, X ~ N(0,1), Y = 0X + p
52
=Y ~N(p,02) = My(s) =el*e” T, scR.

4. If X and Y are independent and Z = X + Y, then Mz(s) = Mx(s)My (s).
Proof: E[e*?] = E[e*XT¢Y] = E[e*X Y |=E[e*X|E[e®Y]. ]
Consider the following examples:

(a) X1 ~ N(u1,0%2); Xo ~ N(p2,03); and X1, X are independent. Z = X7 + Xo;

2.2
S 71
MX1(S) = e(’“ i ’ >a
2.2
S 728
Mx,(s) = (o 5)
Mz(s) = Mx,(s)Mx,(s),

02 02 52
e((ﬂl_;’_pa)s_‘_%)

= Z ~ N(p1 + p2, 0% + 03).
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(b) X7 ~exp(p); Xa ~ exp(A), A # p and X5, X5 are independent. Z = X1+ X2;

1
M =
x:(8) M_s’
A
MXz(S) N_s’
Mz(s) = Mx,(s)Mx,(s),
7% . .
= — , ROCis s <min(A, pu
=)= 9) )
1% -z A —px
= 7)\ _—_— M
= fz(x) T e M_/\pe ,
S
= (u_)\)(e e ), x> 0.

N
5. Z =5 X;, X; are i.i.d and N is independent of X;.

Mz(s) =E[e*?] = EI[E[e*?|N]],
= E|0x()"].,

If we write in terms of the PGF and MGF of N, then,

Mz(s) = Gn(Mx(s)),
= My (log Mx(s)).

N

For example, X; ~ exp(u); N ~ Geom(p) and Z = > X;. Then the distribution of Z is computed as
i=1

follows:

Mx(s) = L s < i,
v = T <1
Mz(s) = Gn(Mx(s)),

25.2 Exercise

1. (a) [Dimitri P.Bertsekas] Find the MGF associated with an integer-valued random variable X that
is uniformly distributed in the range {a,a + 1,...,b}.



Lecture 25: Moment Generating Function 25-5

(b) [Dimitri P.Bertsekas] Find the MGF associated with a continuous random variable X that is
uniformly distributed in the range [a, b].

2. [Dimitri P.Bertsekas] A non-negative interger-valued random variable X has one of the following MGF":

(a)
(b)
(
(

(8) _ 62(625_171)

M
M
a) Explain why one of the 2 cannot possibly be a MGF.
b) Use the true MGF to find P(X = 0).

3. Find the variance of a random variable X whose moment generating function is given by

Mx (s) = e3¢ =3



