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Abstract.  The generalized central limit theorem is a remarkable generalization 
of the central limit theorem, showing that the sum of a large number of 
independent, identically-distributed (i.i.d) random variables with infinite 
variance may converge under appropriate scaling to a distribution belonging 
to a special family known as Lévy stable distributions. Similarly, the maximum 
of i.i.d. variables may converge to a distribution belonging to one of three 
universality classes (Gumbel, Weibull and Fréchet). Here, we rederive these 
known results following a mathematically non-rigorous yet highly transparent 
renormalization-group-inspired approach that captures both of these universal 
results following a nearly identical procedure.
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1.  Introduction

Consider some distribution P (x) from which we draw independent random variables 
x1, x2, ..., xn. If the distribution has a finite standard deviation σ and mean 〈x〉, we can 
define:

ξ ≡
∑N

i=1(xi − 〈x〉)
σ
√
N

,� (1)

and the central limit theorem (CLT) tells us that the distribution of ξ, p(ξ), approaches 
a Gaussian with vanishing mean and a standard deviation of 1 as N → ∞. What hap-
pens when P (x) does not have a finite variance? Or a finite mean? Perhaps surprisingly, 
in this case the generalized central limit theoreom (GCLT) tells us that the limiting 
distribution belongs to a particular family (Lévy stable distributions), of which the 
Gaussian distribution is a proud member albeit e pluribus unum. Moreover, the famil-
iar 

√
N  scaling of the above equation does not hold in general, and its substitute will 

generally sensitively depend on the form of the tail of the distribution.
The results are particularly intriguing in the case of heavy-tailed distributions 

where the mean diverges. In that case the sum of N variables will be dominated by 
rare events, regardless of how large N is! Figure 1(c) shows one such example, where a 
running sum of variables drawn from a distribution whose tail falls o as p(x) ∼ 1/x3/2 
was used. The code which generates this figure is remarkably simple, and included in 
the appendix. The underlying reason for this peculiar result is that for distributions 

https://doi.org/10.1088/1742-5468/ab5b8c
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with a power-law tail p(x) ∝ 1/x1+µ, with µ � 1, the distributions of both the sum and 
maximum of the N variables scale in the same way with N, namely as N1/µ—dramati-
cally dierent from the 

√
N  scaling we are used to from the CLT. (Note that we are 

excluding the regime 1 < µ < 2 here, since in that case if the mean 〈x〉 of the distribu-
tion is non-zero, the dominant term in the running sum will be N〈x〉 rather than N1/µ.) 
The distribution of the maximum is known as the extreme value distribution or EVD 
(since for large N it inherently deals with rare, atypical events among the N i.i.d vari-
ables). Surprisingly, also for this quantity universal statements can be made, and when 
appropriately scaled this random variable also converges to one of three universality 
classes—depending on the nature of the tails of the original distribution from which 
the i.i.d variables are drawn.

Here, we will provide a straightforward derivation of these results. Although com-
pact and elementary, to the best of our knowledge it has not been utilized previously, 
and is distinct (and simpler) than other renormalization-group approaches to the GCLT 
and to EVD, which are discussed later on. The derivation will not be mathematically 
rigorous—in fact, we will not even specify the precise conditions for the theorems to 
hold, or make precise statements about convergence. In this sense the derivation may 
be considered as ‘exact but not rigorous’, targeting a physics rather than mathematics 
audience ([1], for example, provides a rigorous treatment of many of the results derived 
in this paper). Throughout, we will assume suciently smooth probability distributions 
(what mathematicians refer to as probability density functions), potentially with a 
power-law tail such that the variance or mean may diverge (known as a ‘fat’ or ‘heavy’ 
tail).

1.1. Example: Cauchy distribution

Consider the following distribution, known as the Cauchy distribution:

p(x) =
1

γπ(1 + (x
γ
)2)

.� (2)

Its characteristic function ϕ(ω) ≡
∫∞
−∞ p(x)eiωxdx is:

ϕ(ω) = e−γ|ω|.� (3)

Thus the characteristic function of a sum of N such variables is:

ϕN(ω) = e−Nγ|ω|,� (4)

and taking the inverse Fourier transform we find that the distribution of the sum, 
p N(x), is also a Cauchy distribution:

pN(x) =
1

Nγπ(1 + ( x
Nγ

)2)
.� (5)

Thus, the sum does not converge to a Gaussian, but rather retains its Lorentzian 
form. Moreover, it is interesting to note that the scaling form governing the width of 
the Lorentzian evolves with N in a dierent way than the Gaussian scenario: while in 
the latter the variance increases linearly with N hence the width increases as 

√
N , here 

https://doi.org/10.1088/1742-5468/ab5b8c


An elementary renormalization-group approach to the generalized central limit theorem and extreme

4https://doi.org/10.1088/1742-5468/ab5b8c

J. S
tat. M

ech. (2020) 013214

(a)

0 2 4 6 8 10
Index 106

-500

0

500

1000

1500

2000

2500

3000

3500

R
un

ni
ng

 S
um 6.2 6.25 6.3

106

1600

1700

1800

1900

(b)

0 2 4 6 8 10
Index 106

-2

0

2

4

6

8

10

12

R
un

ni
ng

 S
um

106

6.2 6.22 6.24 6.26 6.28 6.3

106

1.8

1.81

1.82

1.83

106

(c)

0 2 4 6 8 10
Index 106

0

2

4

6

8

R
un

ni
ng

 S
um

1013

6.2 6.25 6.3

106

6.2108

6.211

6.2112

6.2114

1013

Figure 1.  Running sum of independent, identically-distributed variables drawn 
from three distributions: Gaussian (top), Cauchy (middle) and a distribution with 
positive support and a power-law tail 1/x3/2 (bottom). See Appendix for details of 
the code. The insets illustrate the self-similar nature of the running sum, zooming 
into the small region of the original plot between the two vertical, dashed lines.
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the scaling factor is linear in N. This remarkable property is in fact useful for certain 
computer science algorithms [2].

2. Self-similarity of running sums

To generate figure  1, we generate a set of i.i.d variables from a given distribution 
(Gaussian, Cauchy and a heavy-tailed distribution with positive support whose tail 
falls o as 1/x3/2). For each long sequence of random variables, the running sum is 
plotted. For the Gaussian case (or any case where the variance is finite), the result is 
the familiar process of diusion: the variance increases linearly with ‘time’ (i.e. the 
index of the running sum). For figure 1(a) the mean vanishes, hence the running sum 
follows this random walk behavior. If we were to repeat this simulation many times, 
the result of the running sum at time N, a random variable of course, is such that 
when scaled by 1/

√
N  it would follow a normal distribution with variance 1, as noted 

in equation (1). Another important property is that ‘zooming’ into the running sum 
(see the figure inset) looks identical to the original figure—as long as we do not zoom 
in too far as to reveal the granularity of the data. Figure 1(b) shows the same analysis 
for the Cauchy distribution of equation (2). As we have seen, now the scaling is lin-
ear in N. Nevertheless, zooming into the data still retains its Cauchy statistics. The 
mathematical procedure we will shortly follow to find all Lévy stable distributions will 
rely on this self-similarity. Indeed, assume that a sum of variables from some distribu-
tion converges—upon appropriate linear scaling—to some Lévy stable distribution. 
Zooming further ‘out’ corresponds to generating sums of Lévy stable variables, hence 
it retains its statistics. A dramatic manifestation of this is shown in figure 1(c). The 
initial distribution is not a Lévy stable, but happens to have a very fat tail, possess-
ing infinite mean and variance. The statistics of the running sum converges to a Lévy 
stable distribution—in this case fortuitously expressible in closed form, corresponding 
to the Lévy distribution we will discuss in equation (28). Importantly, zooming into 
the running sum still retains its statistics, which in this case happens to manifest large 
jumps associated with the phenomenon of Lévy flights, which will be elucidated by 
our later analysis. Due to the self-similar nature, zooming into what seems to be flat 
regions in the graph shows that their statistical structure is the same, and they also 
exhibit these massive jumps. We also note that this renormalization-group-inspired 
idea has been utilized in the context of the ‘conventional’ CLT in [3] (Exercise 12.11). 
Notably, [4] discusses the deep connections between the CLT and RG approaches, and 
emphasizes the notion and relevance of ‘Self-similar random fields’, highly related to 
the self-similarity discussed here that forms the basis of our RG-inspired analysis. It 
should be emphasized that our approach is not an RG one par excellence and appears 
to be simpler than other RG approaches previously utilized in the context of the GCLT 
[5], as we elaborate on later.

https://doi.org/10.1088/1742-5468/ab5b8c
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3. RG-inspired approach to the generalized central limit theorem

We will look for distributions which are stable: this means that if we add two (or more) 
variables drawn from this distribution, the distribution of the sum will retain the same 
shape—i.e. it will be identical up to a potential shift and scaling, by some yet undeter-
mined factors. If the sum of a large number of variables drawn from any distribution 
converges to a distribution with a well defined shape, it must be such a stable distribu-
tion. The family of such distributions is known as Lévy stable.

We shall now use an approach similar to those used in the context of RG (renor-
malization group) to find the general form of such distributions, which will turn out to 
have a simple representation in Fourier rather than real space—essentially because the 
characteristic function is the natural object to deal with here.

The essence of the approach relies on the fact that if we sum a large number of 
variables, and the sum converges to a stable distribution, then by definition taking a 
sum involving, say, twice the number of variables, will also converge to the same distri-
bution—up to a potential shift and rescaling. This is illustrated visually in figure 1 by 
plotting the running sum of independently and identically distributed variables.

Defining the partial sums by sn, the general (linear) scaling one may consider is:

ξn =
sn − bn

an
.� (6)

Here, an determines the width of the distribution, and bn is a shift. If the distribution 
has a finite mean it seems plausible that we should center it by choosing bn = 〈x〉n. We 
will show that this is indeed the case, and that if its mean is infinite we can set bn  =  0.

The scaling we are seeking is of the form of equation (6), and our hope is that if the 
distribution of ξn is pξn(x), then:

lim
n→∞

pξn(x) = p(x)� (7)

exists, i.e. the scaled sum converges to some distribution p(x), which is not necessarily 
Gaussian (or symmetric).

Let us denote the characteristic function of the scaled variable by ϕ(ω) (assumed 
to be approximately independent of n for large n). Consider the variable yn = ξnan. Its 
distribution, pyn is:

pyn(yn) ≈
1

an
p(yn/an),� (8)

with p  the limiting distribution of equation  (7) (and the factor 1
an

 arising from the 
Jacobian of the transformation). The characteristic function of the variable y n is:

ϕyn(ω) ≈ ϕ(anω).� (9)
Consider next the distribution of the sum sn. We have sn = yn + bn, and its distribu-
tion, psn, is:

psn(sn) = pyn(sn − bn).� (10)
Shifting a distribution by bn implies multiplying the characteristic function by eiωbn. 

Therefore the characteristic function of the sum is:

https://doi.org/10.1088/1742-5468/ab5b8c
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ϕsn(ω) = eibnωϕyn(ω) ≈ eibnωϕ(anω).� (11)

This form will be the basis for the rest of the derivation, where we emphasize our 
assumption that the characteristic function ϕ is n-independent.

Consider N = n ·m, where n,m are two large numbers. The important insight is to 
realize that one may compute sN in two ways: as the sum of N of the original variables, 
or as the sum of m variables, each one being the sum of n of the original variables. The 
characteristic function of the sum of n variables drawn from the original distribution 
is given by equation (11). If we take a sum of m variables drawn from that distribution 
(i.e. the one corresponding to the sums of n’s), then its characteristic function will be 
on the one hand:

ϕsN (ω) ≈ eimbnω(ϕ(anω))
m,� (12)

and on the other hand it is the distribution of n ·m = N  variables drawn from the 
original distribution, and hence does not depend on n or m separately but only on their 
product N. Therefore, assuming that n is suciently large such that we may treat it as 
a continuous variable, we have:

∂

∂n
ei

N
n
bnω+

N
n
log[ϕ(anω)] = 0.� (13)

Defining dn ≡ bn
n
, we find:

⇒ iNω
∂dn
∂n

− N

n2
log(ϕ) +

N

n

ϕ′

ϕ

∂an
∂n

ω = 0.� (14)

⇒ ϕ′(anω)ω

ϕ(anω)
=

log(ϕ(anω))

n∂an
∂n

− iω
∂dn
∂n

n
∂an
∂n

.� (15)

Multiplying both sides by an and defining ω̃ ≡ anω, we find that:

ϕ′(ω̃)ω̃

ϕ(ω̃)
− log(ϕ(ω̃))

an

n∂an
∂n

+ iω̃
∂dn
∂n

n
∂an
∂n

= 0.� (16)

Since this equation should hold (with the same function ϕ(ω̃)) as we vary n, we 

expect that an
n ∂an

∂n

 and ∂dn∂n
n

∂an
∂n

 should be nearly independent of n for large values of n. 

The equation for ϕ(ω̃) then takes the following mathematical structure:

ϕ′

ϕ
− C1 log(ϕ(ω̃))

ω̃
= iC2,� (17)

with C1,C2 (real) constants. We may rewrite it using u(ω̃) ≡ log(ϕ(ω̃)) as:

u′ − C1

ω̃
u = iC2.� (18)

It is straightforward to solve the ODE and find that for C1 �= 1 its general solution 
is:

u(z) = A|ω̃|C1 +
iC2

1− C1

ω̃,� (19)

https://doi.org/10.1088/1742-5468/ab5b8c
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while for C1  =  1 the general solution is:

u(z) = A|ω̃|+ iC2ω̃ log(|ω̃|),� (20)
with A in both equations an arbitrary complex constant. Importantly, note that since 
equation (17) is ill-defined at ω = 0, the constant A may change as ω changes sign—we 
will shortly see that this indeed must be the case.

Going back to equation  (16), we can also get the approximate scaling for the 
coecients:

an

n∂an
∂n

≈ C1 ⇒ C1
∂ log(an)

∂n
≈ 1/n.� (21)

This implies that:

log(an) ≈
1

C1

log(n) + constant ⇒ an ∝ n1/C1 .� (22)

Similarly:

∂dn
∂n

n
∂an
∂n

= C2.� (23)

Hence:

∂dn
∂n

∝ n1/C1−2.� (24)

Therefore:

dn = C3n
1/C1−1 + C4 ⇒ bn = C3n

1/C1 + C4n,� (25)
where we relied on our previous definition dn = bn/n. The first term in the formula 
for bn will become a constant when we divide by the term an ∝ n1/C1 of equation (6), 
leading to a simple shift of the resulting distribution. Upon dividing by the term an, 
the second term will vanish for large n when C1  <  1. The case C1  >  1 corresponds to 
the case of a variable with finite mean, in which case the C4n term will be associated 
with centering of the scaled variable by subtracting their mean, as in the standard 
CLT.

A word of caution. The constraint imposed by our RG-inspired approach is insuf-
ficient in pinning down the scaling factor an precisely. Really, all we know is that 
limn→∞

an
n ∂an

∂n

 should tend to a constant. In the above, we solved the ODE resulting 

from equating this term to a constant, but it is easy to see that modulating this 
power-law by, e.g. logarithmic corrections (or powers thereof) would also satisfy the 
RG requirement. Similarly care should be taken in interpreting the power-law scaling 
of the coefficients bn, as well as their counterparts in the ‘extreme value distributions’ 
later on. Nevertheless, in many applications knowing the leading order dependence 
of the coefficients on n suffices, which is adequately captured by the RG-inspired 
approach.

https://doi.org/10.1088/1742-5468/ab5b8c
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4. General formula for the characteristic function

According to equations (19) and (20), the general formula for the characteristic function 
of p(ξn) for C1 �= 1 is:

ϕ(ω) = eA|ω|C1+iDω
� (26)

the iD term is associated with a trivial shift of the distribution (related to the linear 
scaling of bn) and can be eliminated. We will therefore not consider it in the following. 
The case of C1  =  1 will be considered in the next section.

The requirement that the inverse Fourier transform of ϕ is a probability distribu-
tion imposes that ϕ(−ω) = ϕ∗(ω). Therefore the characteristic function takes the form:

ϕ =

{
eAωC1 ω > 0

eA
∗|ω|C1 ω < 0.

� (27)

(As noted previously, the value of A in equation (26) was indeed ‘allowed’ to change 
at ω = 0).

This may be rewritten as:

ϕ = e−a|ω|µ[1−iβsign(ω)tan(πµ
2
)],� (28)

where clearly µ = C1. The asymmetry of the distribution is determined by β . For this 
representation of ϕ, we will now show that −1 � β � 1, that β = 1 (β = −1) corre-
sponds to a distribution with positive (negative) support, and β = 0 corresponds to a 
symmetric distribution.

Consider p(x) which decays, for x  >  x*, as

p(x) =
A+

x1+µ
,� (29)

with 0 < µ < 1, and similarly has a left tail (at suciently negative x):

p(x) =
A−

x1+µ
.� (30)

Generally, the form of the tails of the distribution dictate the form of the charac-
teristic function for small ω—these are broadly referred to as Tauberian theorems [1]. 
For small, positive ω, a Tauberian theorem tells us that the Fourier transform is well 
approximated by:

ϕ(ω) ≈ 1− C̃ωµ(A+e
−iµπ

2 + A−e
iµπ

2 ),� (31)

with C̃ ≡ Γ(1−µ)
µ  (see [6] for a simple, non-rigorous derivation).

We can write this as ϕ(ω) ≈ 1− Cωµ, where now we have:

Im(C)

Re(C)
=

−sin(π
2
µ)

cos(π
2
µ)

(
A+ − A−

A+ + A−

)
= −tan(

π

2
µ)β,� (32)

with β defined as:

β =
A+ − A−

A+ + A−
.� (33)

https://doi.org/10.1088/1742-5468/ab5b8c
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This clarifies the notation of equation (28), and why β is restricted to the range [−1, 1].

In the case 1 < µ < 2, upon performing the shift of equation  (6) the linear in ω 
contribution to the characteristic function near the origin will be eliminated, and a 
Tauberian theorem ensures that to leading order equation (31) still holds.

		 Special Cases

		 µ = 1/2, β = 1: Lévy distribution

		 Consider the Lévy distribution:

p(x) =

√
C

2π

e−
C
2x

(x)3/2
(x � 0).� (34)

		 The Fourier transform of p(x) for ω > 0 is

ϕ(ω) = e−
√
−2iCω,� (35)

		 which indeed correspond to tan(π
2
1
2
) = 1 → β = 1.

		 µ = 1: Cauchy distribution and more

		 The case µ = 1, β = 0 corresponds to the Cauchy distribution. In the general case 
µ = 1 and β �= 0, we have seen that the general form of the characteristic function 
is, according to equation (20):

ϕ(ω) = eA|ω|+iDω log |ω|.� (36)

		 Relying on a similar Tauberian theorem to the previously quoted ones leads to:

ϕ(ω) = e−|Cω|[1−iβSign(ω)φ]; φ = − 2

π
log|ω|,� (37)

A tail of tales—and black swans. It is interesting to note that unlike the case of 
finite variance, here the limiting distribution depends only on A+ and A−: the tails 
of the original distribution. The behavior is only dominated by these tails—even if 
the power-law behavior only sets in at large values of |x|! This also brings us to con-
cept of a ‘black swan’: scenarios in which rare events—the probability of which is 
determined by the tails of the distribution—may have dramatic consequences. Here, 
such events dominate the sums. For a popular discussion of black swans and their 
significance, see [7].

https://doi.org/10.1088/1742-5468/ab5b8c
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		 where once again β is confined to the range [−1, 1]. This is the only exception to 
the form of equation (28).

5. RG-inspired approach for extreme value distributions

Consider the maximum of n variables drawn from some distribution p(x), character-
ized by a cumulative distribution C(x) (i.e. C(x) is the probability for the variable to 
be smaller than x). It vanishes for x → −∞ and approaches 1 as x → ∞. We will now 
find the behavior of the maximum for large n, that will turn out to also follow universal 
statistics—much like in the case of the GCLT—that depend on the tails of p(x). This 
was discovered by Fisher and Tippett, motivated by an attempt to characterize the 
distribution of strengths of cotton fibers [8], and has since found a plethora of diverse 
applications as reviewed in [9]. Our approach will be reminiscent (yet distinct) from 
that of Fisher and Tippett, and will in fact closely follow the RG-inspired approach we 
used for deriving the Lévy stable distributions, albeit with the cumulative distribution 
function replacing the role of the characteristic function—for reasons that will shortly 
become clear. Note that other works in the literature also use an RG approach to study 
this problem, but in a rather dierent way (e.g. [3, 10–15]). While here the derivation 
only relies on the fact that taking the maximum through dierent procedures should 
lead to the same result (in the spirit of RG approaches), these works use a ‘traditional’ 
renormalization group approach; more specifically, in conventional RG one considers 
the flow of a variable, a number of variables, or in our context, an entire distribution 
(which is often referred to in the literature as ‘functional RG’ for this reason), upon 
a coarse-graining step. Having established such RG-flow, one can explore both the 
location as well as properties of the fixed points of the mapping (which in our case 
correspond to the possible limiting distributions), test their stability, and importantly, 
consider the flow to each of the fixed points. This often allows one to find the ‘basin of 
attraction’ of each of the fixed point—which for our problem determines which univer-
sality class a particular function belongs to. As mentioned below, such RG approaches 
can typically also provide us with the finite-size corrections to the fixed point, corre
sponding to ‘truncating’ the RG flow before it reached the fixed point. In contrast, the 
RG-inspired approach here, at least in its current form, can eciently constrain the 
forms of the limiting distributions (the fixed point) but it is unclear whether it can also 
capture the finite-size corrections to it or provide us with more information akin to that 
provided by the RG-flow of the alternative approaches.

Extreme values. We will be interested in the maximum (or minimum) of a large 
number of variables. By nature, this (rare) random event is an outlier—the largest 
or smallest over many trials (assumed here to be independent). Indeed, the results 
are often applied to problems where the extreme events matter—what should be the 
height of a dam? What is the chance of observing an earth-quake or tsunami of a 
given magnitude? For these reasons insurance companies are likely to be interested 
in this topic.
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To begin, we define:

Xn ≡ max(x1, x2, ..., xn),� (38)
where x1, ..., xn are again i.i.d. variables. Since we have:

Prob(Xn < x) = Prob(x1 < x)Prob(x2 < x)...Prob(xn < x) = Cn(x),� (39)
it is natural to work with the cumulative distribution when dealing with extreme value 
statistics, akin to the role which the characteristic function played in the previous sec-
tion. Clearly, it is easy to convert the question of the minimum of n variables to one 
related to the maximum, if we define p̃(x) = p(−x).

Before proceeding to the general analysis, which will yield three distinct universal-
ity classes (corresponding to the Gumbel, Weibull and Fréchet distributions), we will 
exemplify the behavior of each class on a particular example.

5.1. Example I: the Gumbel distribution

Consider the distribution:

p(x) = e−x.� (40)
Its cumulative is:

C(x) = 1− e−x.� (41)
The cumulative distribution for the maximum of n variables is therefore:

G(x) = (1− e−x)n ≈ e−ne−x

= e−e−(x−x0) ,� (42)

with x0 ≡ log(n).
This is an example of the Gumbel distribution. The general form of its cumulative is:

G(x) = e−e−(ax+b)

.� (43)

Taking the derivative of equation (42) to find the probability distribution for the 
maximum, we find:

pn(x) = e−e−(x−x0)e−(x−x0),� (44)

(where the n dependence enters only via x0). Denoting l ≡ e−(x−x0), we have:

p(x) = e−ll,� (45)

and taking the derivative with respect to l we find that the distribution is peaked at 
x = log(n). It is easy to see that its width is of order unity. We can now revisit the 
approximation we made in equation (42), and check its validity.

Rewriting (1− x/n)n = en log(1−x/n) and Taylor expanding the exponent to second 
order, we find that the approximation

(1− x/n)n ≈ e−x,� (46)
is valid under the condition x �

√
n. In our case, this implies:

e−xn �
√
n.� (47)
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At the peak of the distribution (x = log(n)), we have e−xn = 1, and the approx
imation is clearly valid there for n � 1. From equation (47) we see that the approx
imation we used would break down when we take x to suciently smaller than log(n). 
Defining x = log(n)− δx, we see that the value of δx for which the approximation fails 
obeys e−δx = O(

√
n), hence δx = O(log(

√
n)). Since as we saw earlier the width of the 

distribution is of order unity, this implies that for large n the Gumbel distribution 
would approximate the exact solution well, failing only suciently far in the (inner) 
tail where the probability distribution is vanishingly small. However, a note of caution 
is in place: the logarithmic dependence we found signals a very slow convergence to the 
limiting form. This is also true in the case where the distribution p(x) is Gaussian, as 
was already noted in Fisher and Tippett’s original work [8]. For this reason the afore-
mentioned more traditional RG approaches are very useful, as they are generally apt 
at going beyond the fixed point behavior only (here, the limiting distribution) and also 
capture the finite-size corrections to it [13, 14].

Finally, it is also interesting to explore the tail of the distribution of the maximum, 
where the above approximations fail. This is studied in [16] using a large-deviation 
theoretic approach.

5.2. Example II: the Weibull distribution

Consider the minimum of the same distribution we had in the previous example. The 
same logic would give us that:

Prob[min(x1, ..xn) > ξ] = Prob[x1 > ξ]Prob[x2 > ξ]..Prob[xn > ξ] = e−ξn.
�

(48)

This is an example of the Weibull distribution, which occurs when the variable is 
bounded (e.g: in this case the variable is never negative).

As we shall see below, the general case, for the case of a maximum of n variables 
with distribution bounded by x*, would be:

G(x) =

{
e−a(x∗−x)1/α , x � x∗

0, x > x∗.
� (49)

In this case, the behavior of the original distribution p(x) near the cuto x* is impor-
tant, and determines the exponent α.

5.3. Example III: the Fréchet distribution

The final example belongs to the third possible universality class, corresponding to 
variables with a power-law tail.

If at large x we have:

p(x) =
A+

(x− B)1+µ
.� (50)

Then the cumulative distribution is:

C(x) = 1− A+

µ(x− B)µ
.� (51)

https://doi.org/10.1088/1742-5468/ab5b8c


An elementary renormalization-group approach to the generalized central limit theorem and extreme

14https://doi.org/10.1088/1742-5468/ab5b8c

J. S
tat. M

ech. (2020) 013214

Therefore taking it to a large power n we find:

Cn(x) ≈ e−
A+n

µ(x−B)µ .
� (52)

Upon appropriately scaling the variable, we find that:

G(x) = e
−a

(
x−b

n1/µ

)−µ

,
� (53)

(where a and b do not depend on n).
Importantly, we see that in this case the width of the distribution increases with 

n as a power-law n1/µ—for µ � 1, this is precisely the same scaling we derived for the 
sum of n variables drawn from this heavy-tailed distribution! This elucidates why in 
the scenario µ � 1 (corresponding to figure 1(c)) we obtained Lévy flights, where the 
sum was dominated by rare events no matter how large n was. This is related to the 
so-called ‘single big jump principle’, which has been recently shown to pertain to 
a broader class of scenarios in physics, extending the results for i.i.d. variables (see  
[17, 18] and references therein), as well as applications in finance [19].

We shall now show that these 3 cases can be derived in a general framework, using 
a similar approach to the one we used earlier.

5.4. General form for extreme value distributions

We will now find all possible limiting distributions, following similar logic to the 
RG-inspired approach used to find the form of the characteristic functions in the 
GCLT. By itself, our analysis will not reveal the ‘basin of attraction’ of each universal-
ity class, nor will we find the precise scaling of the coecients an and bn. These require 
work beyond the basic RG-inspired calculation presented here.

As before, let us assume that there exists some scaling coecients an, bn such that 
when we define:

ξn ≡ Xn − bn
an

,� (54)

the following limit exists:

lim
n→∞

Prob(ξn = ξ) = g(ξ).� (55)

(note that this limit is not unique: we can always shift and rescale by a constant). This 

would imply that p(Xn) ≈ a−1
n g

(
Xn−bn

an

)
 and the cumulative is given by: G

(
Xn−bn

an

)
. By 

the same logic we used before, we know that Gm
(

Xn−bn
an

)
 depends only on the quantity 

N = n ·m. Therefore we have:

∂

∂n

(
GN/n

(
Xn − bn

an

))
= 0.� (56)

(Note that here Xn is the random variable we are interested in: hence while derivatives 
of the coecients an, bn appear, a derivative of Xn is not defined and does not appear).
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From which we find:

−N

n2
logG+

N

n

G′

G

[
− ∂

∂n

(
bn
an

)
− Xn

a2n

∂an
∂n

]
= 0.� (57)

Upon defining a new random variable x̃ ≡ Xn−bn
an

 (as in equation  (54)), the equa-
tion can be rewritten as:

[log(− logG(x̃))]′ = −
[
n

an

∂bn
∂n

+
n

an

∂an
∂n

x̃

]−1

.� (58)

In order for the RHS to have a sensible limit for large n, we would like to have:

lim
n→∞

n

an

∂an
∂n

= α,� (59)

with α constant. Similarly, we have:

lim
n→∞

n

an

∂bn
∂n

= β,� (60)

with β constant.
We shall shortly show that the value of α will dictate which of the three universal-

ity classes we will converge to.

Fréchet distribution:
If α > 0, we find that to leading order (with the same subtle interpretation as in the 

case of the Lévy stable distribution above, see box ‘A word of caution’):
an ∝ nα.� (61)

Next, requiring that n
an

∂bn
∂n

 should be constant implies that bn ∝ an. This corre-
sponds to a shift in the scaled variable, and therefore we can set bn  =  0 without loss of 
generality.

Solving for G(x̃) gives the Fréchet distribution:

G(x) = e−ax−1/α

.� (62)

Comparing this form with equation (53), we recognize that 1/α = µ.
Weibull distribution:

Similarly, when α < 0 we find that to leading order:

an ∝ n−|α|.� (63)
Solving for G gives us the Weibull Distribution:

G(x) = ea(β/|α|−x)1/|α|
,� (64)

with a some constant.We see that for this class, the cumulative distribution equals 
precisely 1 at x = β/|α|, implying that the distribution vanishes for x larger than this 
value (while it is manifestly non-zero for smaller x). Note that this threshold is arbi-
trary: we can always add a term proportional to an to the scaling coecients bn, and 
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shift the limiting distribution as desired. Indeed, according to equations (63) and (60) 
we have bn ≈ x̂+ βαn−1/|α| = x̂+ ŝan, with x̂ and ŝ constants. We conclude that for 
large n the coecients bn are approximately constant, and that the coecients an mono-

tonically decrease with n. Since for large n the cumulative of the original distribution 

is well approximated by G
(

Xn−bn
an

)
, and since the support of the limiting distribution 

is bounded from above by β/|α|, we conclude that the original distribution is also 
bounded from above by limn→∞ anβ/|α|+ bn = x̂. The above relation implies that we 
are essentially ‘zooming into’ a particular region of the probability distribution as n 
increases. The distribution of the maximum becomes narrower as n increases, and is 
focused near its upper bound x̂.

As mentioned before, the coecient α is determined by the behavior of the original 
probability distribution near the cuto x* (which we showed above must equal x̂). In 
the particular example discussed earlier p(x) approached a non-zero constant near x*, 
hence we found |α| = 1. It is straightforward to generalize this to the case where p(x) 
vanishes near the cuto as a power-law (x− x∗)c, finding that 1/|α| = c+ 1.

Gumbel distribution:
Finally, consider the case α = 0. Given that n

an
∂bn
∂n

 is approximately constant, we 
obtain the Gumbel distribution:

G(x) = e−e−(ax+b)

.� (65)

In the two previous cases where α �= 0, we found that the leading order behavior of 
the coecients an, bn was pinned-down by the RG-inspired approach. This is not the 
case when the RHS of equation (59) vanishes. In this case, unfortunately, the leading 
order of the scaling coecients an is non-universal, and therefore cannot be determined 
from the RG-inspired approach alone. According to equation (60) the same holds for 
the scaling coecients bn. For α = 0 both scaling coecients an and bn must be deter-
mined from the tail of p(x). An interesting extended discussion can be found in [16], 
where the Gaussian case is analyzed. It can be shown that for the Gaussian distribution 
a particular (but non-unique) choice of scaling coecients that leads to convergence to 
a Gumbel distribution is [8, 16]:

an = 1/bn; bn =
√

2 log(n)− log(4π log(n)).� (66)

We can now revisit equation (58), and plug in these explicit expressions for an and 
bn. A straightforward calculation shows that:

n

an

∂bn
∂n

= 1− 1

2 log n
,� (67)

hence for large n it is approximately 1. In contrast:

n

an

∂an
∂n

=
1− 1

2 logn

2 log(n)− log(4π log(n))
,� (68)

therefore the second term of equation  (58) indeed vanishes for large n—albeit very 
slowly due to the logarithmic dependence!
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Another word of caution. Throughout the work, the logic of the RG-inspired 
approach assumes we have some scaling coefficients an, bn such that the limit of equa-
tion (55) exists, and draws the (rather strong) constraints on the limiting distribu-
tions and scaling coefficients from this condition. But it is not a priori clear that such 
a scaling is at all possible! Indeed, consider a probability distribution with support 
on (e,∞), and the following cumulative distribution:

C(x) = 1− 1/ log(x).� (69)
The cumulative of the sum of n i.i.d variables drawn from this distribution will be:

Cn(x) = (1− 1/ log(x))n ≈ e−n/ log(x) = e−1/ log(x1/n)
� (70)

where the approximation is valid for 1/ log(x) �
√
n. Clearly, linear scaling of the 

form of equation  (54) would not be able to get rid of the n dependence in equa-
tion  (70)—therefore convergence to one of the three universality classes does not 
occur in this scenario.
Another way of seeing this relies on the evaluation of a simple limit, the result of which tells 
us which (if any) universality class a given function belongs to (this and other useful rela-
tions are succintly summarized in [16]). Consider:

c = log2

[
lim
ε→0

C−1(1− ε)− C−1(1− 2ε)

C−1(1− 2ε)− C−1(1− 4ε)

]
.� (71)

If the limit exists, a positive c implies convergence to Fréchet, negative to Weibull 
and 0 to Gumbel. In the above example, the limit diverges since C−1(1− ε) = e1/ε

—hence the limiting distribution does not exist for any linear scaling, as we saw 
above.

6. Summary

The generalized central limit theorem and the extreme value distributions are often 
referred to as tales of tails—primarily dealing with distributions that are ‘heavy-tailed’, 
leading to the breakdown of the CLT. We began by exploring sums of (i.i.d.) random 
variables. We used a renormalization-group-inspired approach to find all possible lim-
iting (stable) distributions of the sums, leading us to a generalization of the CLT to 
heavy-tailed distributions. Finally, we used a similar approach to study the similarly 
universal behavior of the maximum of a large number of (i.i.d) variables, in which case 
the cumulative distribution played the part previously taken by the characteristic func-
tion. In both cases the self-similarity of the resulting sum or maximum led to a simple 
ODE governing the limiting distributions and elucidating their universal properties. In 
the future, it would be interesting to see if this approach can be extended to functions 
of multiple variables [20], as well as to the case of correlated rather than i.i.d random 
variables, which although relevant to numerous applications has only recently began to 
be more systematically explored [21, 22].
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Appendix. Code for running sum

In order to generate the data shown in figure 1(a), the following MATLAB code is used:
tmp  =  randn(N,1);
x  =  cumsum(tmp);
For figure 1(b), to generate a running sum of variables drawn from the Cauchy dis-

tribution, the first line is replaced with:
tmp  =  tan(pi*(rand(N,1)-1/2));
Finally, for figure 1(c) the same line is replaced with:
t  =  rand(N,1);
b  =  1/mu;
tmp  =  t.^(-b);

where we used µ = 1/2 for the figure.
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