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Introduction

One of the most striking aspects of physics is the simplicity of its laws.
Maxwell’s equations, Schrodinger’s equation, and Hamiltonian mechan-
ics are simple and expressible in few lines. However every place we look,
outside the textbook examples, we see a world of amazing complexity:
huge mountain ranges, scale free coastlines, the delicate ridges on the sur-
face of sand dunes, the interdependencies of financial markets, the diverse
ecologies formed by living organisms are few examples. Each situation
is highly organized and distinctive, but extremely complex. So why, if
the basic laws are simple, is the world so complicated? The idea of Self
Organized Criticality was born aiming to give an explanation for this ubiq-
uitous complexity [J.98]. In this chapter the basic concepts related to SOC,
that will be important for this thesis, are introduced.

The examples, cited above, share a common feature: a power-law
tail of the correlations. Consider the two point correlation of a quantity
Dh (x) = h (x) � h̄, where h (x) is the height at a place x in a mountain
range, and h̄ is its average value. The function hDh(x + r)Dh(x)i increases
as rd, with the exponent d varying very little for different mountain ranges.
Similar distribution with extended tails is observed in many other natural
phenomena: Gutenberg-Richter law in earth quake [GR56], Levy distribu-
tion in stock market price variations [Bak96a], Hacks law in River networks
[DR99, BCF+01] etc. Such power-law distributions entail scale invariance
— there are no macroscopic spatial scales other than the system size, in
terms of which one can describe the system, making it complex.

Such features are familiar to physicist in equilibrium systems under-
going phase transition. In standard critical phenomena there are control
parameters such as temperatures, magnetic field, which requires to be fine
tuned by an external agent, to reach the critical point. This is unlikely to
happen in naturally occurring processes such as formation of mountain
ranges, earth quakes or even stock markets. These are non-equilibrium
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systems brought to their present states, by their intrinsic dynamics — and
not by a delicate selection of temperature, pressure or similar control pa-
rameters. 1.

In the summer of 1987, Bak, Tang and Wiesenfeld(BTW) published
a paper [BTW87] proposing an explanation to such ubiquitous scale in-
variance. They argued that the dynamic which gives rise to the robust
power-law correlations seen in the non-equilibrium steady states in nature
must not involve any fine tuning of parameters. It must be such that the
systems under their natural evolution are driven to a state at the bound-
ary between the stable and unstable states. Such a state then shows long
range spatio-temporal fluctuations similar to those in equilibrium critical
phenomena. The complex features appear spontaneously due to a coop-
erative behavior between the components of the system. They called this
self-organized criticality as the system self-organizes to its critical steady
state.

SOC nicely compliments the idea of chaos. In the latter, dynamical
systems with a few degrees of freedom, say as little as three, can display
extremely complicated behavior. However, a statistical description of this
randomness is predictable in the sense that, the signals have a white noise
spectrum, and not a power law tail. A Chaotic system has little memory
of the past, and it is easy to give a statistical description of such behavior.
In short, chaos does not explain complexity. On the other hand, in SOC,
generally, we start with systems of many degrees of freedom, and find
a few general features which are also statistically predictable, but has a
power-law spectra leading to complex behavior. In certain dynamical sys-
tems, e.g., logistic maps, there are points (the Feigenbaum point [Fei78])
in the parameter space, which separates states with a predictable periodic
behavior and chaos. At this transition point there is complex behavior,
with power-law correlations. SOC gives description of how systems, un-
der their own dynamics, without external monitoring, reaches this very
special point (“edge of chaos”), explaining the robust complex behavior in
natural systems.

In the book “How nature works?”, Per Bak gives various kinds of natu-
ral examples of SOC, of which the canonical one is the sandpile. On slowly
adding grains of sand to an empty table, a pile will grow until its slope
becomes critical and avalanches start spilling over the sides. If the slope
is too small, each grain just stays at the place where it lands or creates a
small avalanche. One can understand the motion of each grain in terms
the local properties, like place, the neighborhood around it etc. As the

1Per Bak, in his book [Bak96b], puts this in an interesting comment—“The nature is
operated by a ’blind watchmaker’ who is unable to make continuous fine adjustments”
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process continues, the slope of the pile become steeper and steeper. If the
slope becomes too large, a large catastrophic avalanche is likely, and the
slope will reduce. Eventually, the slope reaches a critical value where there
are avalanches of all sizes. At this point, the system is far out of balance,
and its behavior can no longer be understood in terms of the behavior of
localized events. The system is invariably driven towards its critical state.

In order to have a mathematical formulation of SOC, BTW studied a so-
called cellular automata known as the sandpile model [BTW87], which
is discrete in space, time and in its dynamical variables. The model is
defined on a two dimensional square lattice where each site i has a state
variable zi referred as height, which takes only positive integer values.
This integer can be thought of as representing the amount of sand at that
location or in another sense it represents the slope of the sandpile at that
point. Neither of these analogies is fully accurate, the model has aspects
of both. One should consider it as a mathematical model of SOC, rather
than an accurate model of physical sand.

A set of local dynamical rules defines the evolution of the model: At
each time step a site is picked randomly, and its height zi is increased by
unity. In this thesis, this step will be referred as the driving. If the height
now is greater than or equal to a threshold value zc = 4, the site is said
to be unstable. It relaxes by toppling whereby four sand grains leave the
site, and each of the four neighboring sites gets one grain. If there are
any unstable sites remaining, they too are toppled, all in parallel. In case
of toppling at a site at the boundary of the lattice, grains falling outside
the lattice are removed from the system. This process continues until all
sites are stable. This completes one time step. Then, another site is picked
randomly, its height is increased by 1, and so on.

The following example illustrates the dynamics. Let the lattice size be
3⇥ 3 and suppose at some time step the following configuration is reached
where all sites are stable.

2 3 2
3 3 0
1 2 3

We now add a grain of sand at randomly selected site: let us say the central
site is chosen. Then the configuration becomes the following

2 3 2
3 4 0
1 2 3
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The central site is not stable, and therefore it will topple and the configu-
ration becomes

2 4 2
4 0 1
1 3 3

.

This configuration has two unstable sites, so both will topple in parallel.
Since these are at the boundary, two grains will be lost, on toppling. The
new result is

4 0 3
0 2 1
2 3 3

,

and further toppling leads to

0 1 3
1 2 1
2 3 3

This is a configuration with all sites stable. One speaks in this case of
an avalanche of size s = 4, since there are four topplings. Another mea-
sure is the number of steps required for relaxation, which in this case is
t = 3. For large lattices, in the steady state, the distribution of avalanche
sizes and durations display a long power-law tail, with an eventual cutoff
determined by the finite size of the system.

Since the original sandpile model by BTW a large number of variations
of the model have been studied (see [Dha06, J.98] for reviews). These
are mostly extended systems with many components, which under steady
drive reaches a steady state where there are irregular burst like relaxations
and long ranged spatio temporal correlations. It is to be noted that in
these models the complexity is not contained in the evolution rules itself,
but rather emerges as a result of the repeated local interactions among
different variables in the extended system.

In the rest of this chapter, I will introduce three of the most studied
models of sandpile and the techniques used to analyze them.

3.2.1 Deterministic abelian Sandpile Model (DASM)

This is the most studied model due to it analytical tractability. In a series of
papers, Deepak Dhar and his collaborators have shown that this model has
some remarkable mathematical properties. In particular, the critical state
of the system has been well characterized in terms of an abelian group. In
the following I will generally follow the discussion in [Dha06].

The model is a generalized BTW model on any general graph with N
sites labeled by integers 1, 2, 3 · · · N. To make things precise, I will start
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with some definitions. A configuration C for the sandpile model is spec-
ified by a set of integer heights {zi} defined on the N sites of the graph.
We denote a threshold value of the height at a site i as zc

i . The system
is driven like the BTW model by adding one sand grain at a randomly
chosen site which increases the height at that site by 1. The toppling rules
are specifies by a N ⇥ N toppling matrix D such that on toppling at site i,
heights at all sites are updated according to the rule:

zj ! zj � Di,j for every j. (3.1)

For example in the BTW model on a square lattice

Di,j =

8
<

:

4 for i = j
�1 for i, j nearest neighbors

0 otherwise
(3.2)

Evidently the matrix D has to satisfy some conditions to ensure that the
model is well behaved. These are

1. Di,i > 0, for all i. (Height decreases at the toppled site)

2. Di,j  0, for all j 6= i. (Heights at other sites are increased or un-
changed)

3. Âj Di,j � 0 for all i. (Sand is not generated in toppling)

4. Each site is connected through toppling events to at least one site
where sand can be lost, such as the boundary.

Without loss of generality we choose zc
i = Di,i (This only amounts to defin-

ing the reference level for the height variables).
With this convention, if all zi are initially non-negative they will remain

so, and we restrict ourself to configurations C belonging to that space,
denoted by W. Let S be the space of stable configurations denoted by Cs
where the height variables at each site are below threshold. The property
4 above ensures that stability will always be achieved in a finite time.

We formalize the addition of sand to a stable configuration by defin-
ing an “addition operator” ai so that aiCs is the new stable configuration
obtained by taking zi ! zi + 1 and then relaxing.

The mathematical treatment of ASM relies on one simple property it
possesses: The order in which the operations of particle addition and site
toppling are performed does not matter. Thus the operators ai commute
i.e.

aiajCs = ajaiCs for every i, j and Cs. (3.3)
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The proof uses the linearity of the toppling processes [Dha06]. In the
relaxation processes represented by the two sides of the above equation,
the order of topplings can be changed, but the final configurations are
equal. An example of this abelian nature is the process of long addition of
multi-digit numbers. In this example the toppling process is like carrying.

Note that, there are some “garden of Eden” configurations that once
exited can not be reached again. For example, in the BTW model on square
lattice, system can never reach a state with two adjacent zi = 0. This is
because in trying to topple a site to zero, the neighbor gains a grain, and
vice versa. This leads to the definition of the recurrent state space R which
consists of any stable configuration that can be achieved by adding sand
to some other recurrent configuration. This set is not empty since one
can always reach a minimally stable configuration defined by having all
zi = zc � 1.

Dhar proved [Dha90] another remarkable property that the addition
operators ai have unique inverses when restricted to the recurrent space;
that is, there exists a unique operator a�1

i such that ai

⇣
a�1

i Cs

⌘
= Cs for all

Cs in R. This can be easily seen from the fact that there are finite number
of configurations in R, so for some positive period p, ap

i Cs = Cs with Cs a
recurrent configuration. Using the abelian property it can be shown that
the period p is same for all Cs 2 R. Then ap�1

i is the inverse for ai.
These properties of ai have some interesting consequences [Dha90].

One is that in the steady state all the recurrent configurations are equally
probable. Also, the number of recurrent states is simply the determinant of
the toppling matrix D. For large square lattices of N sites this determinant
can be found easily by Fourier transform. In particular, whereas there are
4N stable states, there are only (3.2102 · · · )N recurrent states. Thus starting
from an arbitrary state and slowly adding sand, the system self-organizes
to an exponentially small subset of states, which are the attractor of this
dynamics.

There are many more interesting properties of the DASM, e.g., using
a burning algorithm [MD92], it is possible to test whether an arbitrary
configuration is recurrent. Using this algorithm it can also be shown that
the model is related to statistics of spanning-trees on the lattice, as well
as with the q ! 0 limit of the Potts model [MD92, Dha06]. As several
results are known about spanning tree these equivalence help in relating
properties of DASM to known properties of spanning trees.

In spite of these interesting mathematical properties, the exponents
characterizing the power-law tail in the distribution of avalanches are still
difficult to determine analytically on most lattices, and computer simula-
tions are still needed. In fact, on a square lattice, the numerical values esti-
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mated by different people have shown a wide range of values. It has been
argued that the simple finite size scaling does not work for the avalanche
distribution and instead it has a multi-fractal character [KNWZ89]. In
some simpler quasi-one dimensional lattices it has been shown that simple
linear combination of two scaling forms provides an adequate description
[AD95].

For higher dimensional lattices it has been shown by Priezzhev that
the upper critical dimension for the models is 4 [Pri00]. For lattices of
dimension above 4, the avalanche exponents take mean field values and
can be deduced from the exact solution of the model on a Bethe lattice
[DM90].

3.2.2 Zhang model

The Zhang model, introduced by Zhang in 1989, differs from the DASM
in two aspects: first, the height variables zi are continuous and takes non-
negative real values. A site is unstable if its height is above threshold,
and it topples by equally dividing its entire content among its nearest
neighbors, and itself becoming empty. Second, the external perturbation
is not by adding height 1, but by a quantum chosen randomly from an
interval [a, b), where 0  a < b are positive real numbers.

Here, is an example of the Zhang model in one dimension. Let the
threshold height is zc

i = 1.5, same for all i, and an initial configuration is

0.8 1.4 0

Now a time step begins by an addition to a random site, of a random
amount chosen from the interval [0, 1.5). Let the amount is 1.0 and the site
is the central site. After addition the result is

0.8 2.4 0

Because the middle site is unstable, an avalanche starts:

2.0 0 1.2 ! 0 1.0 1.2

In case of two or more unstable sites, all are toppled in parallel.
Since the addition amount is random, a stable site could in princi-

ple have any height between zero and the threshold and the stationary
distribution could be very different from that of the DASM, where only
discrete values are encountered. Nevertheless, when one simulates the
model on large lattices in one and two dimensions, the stationary heights
tend to concentrate around nonrandom discrete values. This is known as
the “emergence of quasi-units” [Zha89]. It appears that altering the local
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toppling rules of the DASM, does not have that much effect on the global
behavior after all, if the lattice size is large.

This behavior led to the conjecture that in the thermodynamic limit the
critical behavior is identical to that of DASM. However, due to the changed
toppling rules, the dynamics is no longer abelian, and determining the
steady state is quite difficult, even in one-dimension. In fact, Blanchard et.
al. have shown that the probability distribution of heights in the steady
state, even for the two site problem, has a multi-fractal character [BCK97].

This status was unchanged for over a decade until Fey et. al. showed
that on a one-dimensional lattice, for some specific choice of the amount
of addition, the toppling becomes abelian. Using this they showed that,
indeed, the model is on the same universality class of the DASM. However,
the analysis in two dimension is still an open problem.

3.2.3 Manna model

Another important class of the sandpile models are with stochastic top-
pling rules. The first model of its kind was studied by Manna in 1991, and
is known as the Manna model [Man91].

The evolution rules of this sandpile in d-dimensions are very similar to
the ones defined for the DASM. In fact, the driving rule and the dissipation
rules at the “boundary” remain the same. But in a toppling, an unstable
site redistributes all the sand grains between sites randomly chosen amongst
its 2d nearest neighbors.

zi ! 0
zj ! zj + 1 for zi sites chosen randomly amongst n.n. of i.

The randomness in the evolution rule is a relevant change in the dy-
namics, which makes it non-abelian. It is possible to get back the abelian-
ness by a simple modification in the toppling rule, which I will discuss
in detail in the later chapters. However, the addition operators defined
appropriately do not form a group anymore and this makes the analysis
less tractable even for a linear chain.

The steady state is very different from its deterministic counter part
e.g. on a simple linear chain the different recurrent states are not equally
probable, unlike the deterministic model. Also the avalanche distribution
can be satisfactorily described by simple finite size scaling. Another evi-
dence of the differences between these models is in the way the avalanches
spread over the lattice [MBS98b]. The distribution of number of toppling
per site in a typical avalanche for both DASM and Manna model on a
square lattice are shown in Fig. 3.2.3. For the DASM, one can see a shell
structure in which all sites that toppled T times form a connected cluster
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Figure 3.1: Number of toppling per site for a typical avalanche in (a)
DASM and (b) Manna model. The darker shades denote more topplings.
(Courtesy [MBS98b])

with no holes, and these sites are contained in the cluster of sites that top-
pled T � 1 times, and so on. On the other hand, the toppling distribution
exhibits a random avalanche structure with many peaks and holes.

For many years, the universality of the manna model was a controver-
sial question. At present there are convincing numerical evidences that in
dimension up to 3, they have a different critical behavior, from its deter-
ministic counterpart, with a different set of critical exponents. However
in dimensions d � 4, both DASM and Manna model take the same mean-
field values of critical exponents.

Since the work by BTW, a large number of different models have been
studied e.g. sandpile models with many variations of the BTW toppling
matrix [KNWZ89] or sand grain distribution rules [MZ96], stochastic top-
plings [Man91], with activity inhibition [MG97], continuous height models
[Zha89], loop erased random walk [DD97], Takayasu aggregation model
[Tak89], train model [dSV92, PB96], non-abelian sandpile directed sandpile
model [LLT91, PZL+05, Ali95a, GH02], forest-fire model [DS92], Olami-
Feder-Christensen model [OFC92] etc (and many more could have been
defined). Most of these models could only be studied numerically, and for
a while it seemed that each new variation studied belong to a new univer-
sality class each with its own set of critical exponents. It is a fair question
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Figure 3.2: A
schematic flow
diagram of renor-
malization group
flows between dif-
ferent fixed points
of sandpile models.

to ask, what is the generic behavior?
Although this question is not yet resolved completely, by now, there

has been a fair amount of understanding of this problem. The universality
classes with renormalization group flow in these models can be summa-
rized in the Fig. 3.2.

There are sufficient numerical evidence that sandpile models with de-
terministic toppling rules (DASM) and stochastic toppling rules (Manna
model) constitute different universality classes. There are also several
other model which show critical exponents different from these two [Sne95,
BS93, GZ96]. They are related to the directed percolation (DP) [Kin85],
which describes the active-absorbing state phase transition in a wide class
of reaction-diffusion systems. The activity in avalanches in sandpile can
grow, diffuse or die, and any stable configuration is an absorbing state.
Thus one would expect that in general the sandpile should belong to the
universality class of active-absorbing state transition with many absorbing
states [RMAS00]. However, these models do not involve any conserved
fields. In Manna and DASM-type models, it is this presence of conser-
vation laws of sand that makes the critical behavior different from DP
[VDMnZ98].

Recently, the effect of non-conservation has been explicitly studied
[MD02, MD07] by introducing stickiness in the toppling rules (i.e. there is
small probability that the incoming particles to a site get stuck there, and
do not cause any toppling until the next avalanche hits the site, thus in
effect there is no conservation of grains within an avalanche). It has been
argued that as long as the sand grains have non-zero stickiness, the dis-
tribution of avalanche sizes follows directed percolation exponents. The
DASM, and the stochastic Manna-type models are unstable to this pertur-
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Figure 3.3: A schematic
of a rice-pile. The
elongated shapes of
the rice grains reduces
the inertial effect in an
avalanche. (Courtesy K.
Christensen.)

bation, and the renormalization group flows are directed away from them
to the directed percolation fixed point, as schematically shown in the fig-
ure. This picture is exactly verified in directed sandpiles. However, the
argument is less convincing for undirected models, and the issues is not
settled [BRC+06].

Soon after the sandpile model was introduced, several experimental groups
measured the size distribution of avalanches in granular materials. Unfor-
tunately, real sandpile do not seem to behave as the the theoretical models.
Experiments show large periodic avalanches separated by quiescent states
with only limited activity. While for small piles one could try to fit the
avalanche distribution with power-law over a limited range, the behav-
ior would eventually cross over, on increasing the system size, to a state
which is not scale-invariant [JLN89, JNB96]. It is later realized that inertia
of rolling grains is the reason for non-criticality. A large avalanche prop-
agating over a surface with slope qc scours the surface, and takes away
materials from it. The final angle, after the avalanche has stopped, is bel-
low qc. So if we want to see power-law avalanches, we have to minimize
the effect of inertia of the grains. This is achieved in an experiment in Oslo
by using rice grains. Because of the elongated shape of the rice grains (Fig.
3.3) frictional forces are stronger and these poured at very small rate gave
rise to a convincing power-law avalanche distribution [FCMS+96].

A similar power law distribution of avalanche sizes are obtained in
motion of domain walls in ferro-magnets [DBM95, ZCDS98] and flux lines
in type II superconductors [FWNL95, ORN98]. A more recent experi-
mental realization of SOC is obtained in suspensions of sedimenting non-
brownian particles by slow periodic shear [CGMP09].

It is worth mentioning that SOC has been invoked in several other sit-
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uations in geophysics (atmospheric precipitation [PN06], river pattern due
to erosion [TI92], landslides [MT99]), biology (neural-network [LHG07]),
economics (stock-market crashes [SS99]) and many more. I have delib-
erately chosen the above experimental examples for which experimental
observations are accurate and reproducible.

Originally, SOC was proposed with the aim of providing an explanation
of the ubiquitous complexity in nature [BTW87]. The abundance of fractal
structures in nature, temporal as well as spatial, was considered to be an
effect of a generic tendency — pertinent to most many-body systems — to
develop by themselves in to a critical scale-invariant state.

However, certainly not all systems that organize themselves into one
specific state will, when gently driven, exhibit scale invariance in that self-
organized state. The experiments of real sandpiles referred earlier are a
prime example. Neither is all observed power law behavior are an effect
of dynamical self-organization into a critical state. The work by Sethna
and co-workers on Barkhausen noise [SDK+93] is an interesting example
of this, what Didier Sornette has called “Power laws by sweeping of an
instability” [Sor94].

Since the introduction of the idea, a large amount of discussion went
into understanding the minimum conditions for a model to be self-organized
critical. Though a broad picture has emerged in last two decades, it is still
not complete and controversial. In the rest of this section, I will discuss
two of the most discussed properties, using both examples and counter
examples.

• Slow driving limit. There is a strong belief in the community that
an essential ingredient of SOC is slow driving (driving and dynam-
ics operating at two infinitely separated timescales, i.e. avalanches
are instantaneous relative to the time scale of driving). This idea got
widely accepted after an argument given by Dickman et. al..[RMAS00]
They argued that the dynamics in the sandpile model implicitly in-
volve tuning of the density of grains to a value where a phase transi-
tion takes place between an active state, where topplings take place,
and a quiescent “absorbing” state. When the system is quiescent,
addition of new particles increases the density. When the system
is active, particles are lost to the sinks via toppling, decreasing the
density. The slow driving ensures that these two density chang-
ing mechanisms balance one another out, driving the system to the
threshold of instability.
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However in the Takayasu model of aggregation [Tak89] the driving
is fast. A simple example, it can be defined on a linear chain on
which particles are continuously injected, diffuse and coalesce. One
can write the explicite rules as follows:

– At each time step, each particle in the system moves by a single
step, to the left or to the right, taken with equal probability,
independent of the choice at other sites.

– A single particle is added at every site at each time step.

– If there are more than one particle at one site, they coalesce and
become a single particle whose mass is the sum of the masses
of the coalescing parts. In all subsequent events, the composite
particles acts as a single particle.

The probability distribution of total mass at a randomly chosen site,
has power law tail, with an upper cutoff that increases with time.
This is a signature of criticality. The analogue of avalanches in this
model is the event of coming together of large masses. In fact, it can
be shown [Dha06] that the model is equivalent to a directed version
of sandpile. In this example, it is clear that the driving is fast, and
the rate is comparable to the local movements of the particles.

• Conservation. Conservation of grains is also considered as a key
property for the criticality to emerge in sandpile models. A simple
intuitive argument goes as follows: the sand grains introduced in the
pile can dissipate only by reaching the diffusive “boundary” of the
lattice. Owing to this and because of the vanishing rate of sand addi-
tion, arbitrarily large avalanches (of all possible sizes) must exist for
an arbitrarily large system size, yielding a power-law size distribu-
tion. In contrast, in the presence of non-vanishing bulk dissipation,
grains disappear at some finite rate, and avalanches stop after some
characteristic size determined by the dissipation rate. This clearly
says that bulk dissipation is a relevant perturbation in the sandpile
dynamics and breaks the criticality [BMn08].

There are also some other models of SOC like Forest fire [DS92],
OFC model [OFC92] where it was shown, mostly numerically, that
non-conservation in the dynamics leads to non-critical steady state.

However, extrapolating these results and considering conservation
as a neccesarry criteria for SOC, in general, is not correct. A model
which is clearly non-conservative and still, when slowly driven dis-
plays power-law in the avalanche size distribution is discussed in
[Sad10]. Another two non-conservative models of SOC are a sandpile
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model with threshold dissipation[Ali95b], and Bak-Sneppen model
of evolution [BS93].

Finally, one could ask: Has SOC, taught us anything about the world
that we did not know prior to it? Jensen addresses this question very
nicely in his book. The most important lesson is that, in a great variety of
systems, particularly for slowly-driven-interaction- dominated-threshold
systems, it is misleading to neglect fluctuations. In these systems, some-
times, the fluctuations are so large that the fate of a major part of the
system can be determined by a single burst of activity. Dinosaurs may
have become extinct simply as a result of an intrinsic fluctuation in a sys-
tem consisting of a highly interconnected and interacting web of species;
there may be no need for an explanation in terms of external bombard-
ment by meteorites. Fluctuations are so large that the "atypical" events decides
the future of the system. This new insight is sufficiently important to justify
and inspire more theoretical, and experimental research in SOC.

The work in this thesis ranges from characterizing the spatial patterns
in sandpile model, to quasi-units in the stationary distribution of Zhang’s
model, and determining exact steady state of Manna model. The first three
chapters in the following are about sandpile as a growth model, where
we show how well-structured non-trivial patterns emerge at large length
scales, due to local interactions in cellular lengths where the patterns are
not obvious. In chapter 7 we discuss another emergent behavior in the
Zhang model. Chapter 8 contains an operator algebraic analysis of the
stochastic sandpile models. Here is a brief summary of these chapters.

Chapter 4: While a considerable amount of research went into char-
acterizing the universality classes of sandpile models and under-
standing the mechanism of SOC, very limited work is done about
spatial patterns in sandpile models. Such patterns were noted around
the time when sandpile was first introduced [LKG90]. Yet, very little
is known about them.

This chapter is devoted to the study of a class of such spatial pat-
terns produced by adding sand at a single site on an infinite lattice
with initial periodic distribution of grains and then relaxing using
the DASM toppling rules. We present a complete quantitative char-
acterization of one such patterns. We show that the spatial distances
in the asymptotic (in the limit when large number of grains are
added) patterns produced by adding a large number of grains, can
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be expressed in terms solution of discrete Laplace’s equation (dis-
crete holomorphic functions [Duf56, Mer01, Lov04]) on a grid on
two-sheeted Riemann surface.

We also discuss the importance of these patterns as a paradigmatic
model of growth where different parts of the structure grow in pro-
portion to each other, keeping their shape the same. We call these
kind of growth as proportionate growth. We discuss the importance of
such growth in real world examples.

Chapter 5: In this chapter we describe how the pattern changes in
presence of absorbing sites, reaching which the grains get lost and
no longer participate in the avalanches. We show that, again, the
asymptotic pattern can be characterized in terms of discrete holomor-
phic functions, but on a different lattice. Similar effects of multiple
sites of addition on the pattern are also calculated.

The most interesting effect of the sink sites is the change in the rate
of growth of the pattern. In absence of sink sites the diameter of the
pattern, suitably defined, increases as

p
N where N is the number of

sand grains added in the lattice. When the pattern grows with the
sink sites inside, the growth rate of the diameter changes, in general,
to Na, where the exponent a depends on the sink geometries. For
example, a = 1/3, when the sink sites are along an infinite line
adjacent to the site where grains are dropped. When the site of
addition is inside a wedge of angle p/2 with the sink sites along
the wedge boundary, this value of the exponent is 1/4. We use an
scaling argument and determine a, for some simple sink-geometries.

Chapter 6: The growth rate also depends on the arrangement of
heights in the background, and this dependence is quite intriguing.
When the initial heights are low enough at all sites, one gets patterns
with a = 1/d, in d-dimension. If sites with maximum stable height
(zc � 1) in the starting configuration form an infinite cluster, we get
avalanches that do not stop, and the model is not well-defined. In
this chapter, we study backgrounds in two dimensions. We describe
our unexpected finding of an interesting class of backgrounds, that
show an intermediate behavior: For any N, the avalanches are finite,
but the diameter of the pattern increases as Na, for large N, with
1/2 < a  1, the exact value of a depending on the background.
It still shows proportionate growth. We characterize the asymptotic
pattern exactly for one illustrative example.

Chapter 7: As mentioned, the Zhang model on one and two dimen-
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sional lattices displays a remarkable property: emergence of quasi-
units, where the continuous heights, in spite of the randomness in
the driving, are peaked around a few discrete non-random values.
Fey et. al have shown that on a linear chain the width of the distri-
bution vanishes in the infinite volume limit. However they did not
show how it approaches zero.

In this chapter, we show that, the sequence of toppling of the contin-
uous height variables, when suitably discretized, have an one-to-one
relation with that of integer heights in the corresponding DASM. We
use this relation to show that the width of the distribution of heights
decreases in inverse power of the length of the chain. We also deter-
mine how the variance of height at a site, changes with position of
the site along the length of the system.

Chapter 8: This chapter contains an algebraic approach of determin-
ing the steady state of a class of sandpile models with stochastic
toppling rules. The original Manna model, as discussed in section
1.2.3, does not have the abelian property of its deterministic counter-
part. However, a simple modification of the toppling rules makes the
model abelian [Dha99c]. A similar construction is possible for other
stochastic toppling rules. However, analysis of these models are still
difficult as the corresponding addition operators (see section 3.2.1),
in general, does not have an inverse, and are not diagonalizable.

We show that, in principle, the operators can be reduced to a Jordan
block form, using the algebra satisfied by these. These are then used
to determine the steady state of the models. We illustrate this pro-
cedure by explicitly determining the numerically exact steady for a
stochastic model on a linear chain. Using the desktop computers at
our disposal, we have been able to perform the calculation for sys-
tems of size  12 and also studied the density profile in the steady
state.
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