Measuring the deviation from maximal mixing of atmospheric neutrinos at INO

Sandhya Choubey¹ and Probir Roy^2

¹ Rudolf Peierls Centre for Theo. Phys., Oxford University ² Dept. of Theo. Phys., Tata Inst. of Fundamental Research

hep-ph/0509197

- ICAL@INO
- ν -factfile and $D \equiv 1/2 \sin^2 \theta_{23}$
- $P_{\mu\mu}, P_{\overline{\mu}\overline{\mu}}$ and extrema
- Binned U/D and $(U/D)_N (U/D)_A$ for atmospheric neutrinos
- Sensitivity to |D|, sgn.D
- Summary

India-based Neutrino Observatory proposed at PUSHEP near Mysore in South India

```
(url : http : //www.imsc.res.in/~ino)
```

 \sim 2200m underground

 $\sim 900m$ above MSL

Large magnetized iron calorimeter ICAL with 140 layers of iron plates.

Three modules. Total weight 50 ktons. Active detector element: RPC (?)

Neutrino factfile and focus on $D=1/2-\sin^2\theta_W$

3 weakly interacting
$$\nu$$
's
 ν_e, ν_μ, ν_τ (flavor basis)
 ν_1, ν_2, ν_3 (mass basis, eigenvalues $m_{1,2,3}$)
 $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

$$\sum_{i} m_{i} < 0(1) \ eV \quad \text{from cosmology}$$

$$\sqrt{\Delta m_{21}^{2}} \sim 0.009 \ eV \quad \text{(Solar \& KamLAND)}$$

$$\sqrt{|\Delta m_{32}^{2}|} \sim 0.05 \ eV \quad \text{(atmospheric)}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U \leftrightarrow \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}, \quad U \equiv U_{PMNS}(\underbrace{\theta_{12}, \theta_{23}, \theta_{13}}_{\uparrow}, \delta)$$

$$\uparrow$$
definable
within first quadrant

$$\theta_{12} \sim 32^{\circ}, \theta_{23} \sim 45^{\circ}, \theta_{13} < 13^{\circ}, \delta =?$$

$$|U_{PMNS}| \sim \begin{pmatrix} 0.8 & 0.5 & < 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}, \text{ contrast } |V_{CKM}| \sim \begin{pmatrix} 0.97 & 0.22 & 0.003 \\ 0.22 & 0.97 & 0.04 \\ 0.01 & 0.04 & 0.99 \end{pmatrix}$$

3σ limits

$$\begin{array}{ll} 7.2 \times 10^{-5} \ eV^2 < \Delta m_{21}^2 < 8.9 \times 10^{-5} \ eV^2 \\ 1.7 \times 10^{-3} \ eV^2 < |\Delta m_{32}^2| < 3.3 \times 10^{-3} \ eV^2 \\ 30^\circ < \theta_{12} < 38^\circ \\ 36^\circ < \theta_{23} < 54^\circ \\ \end{array} \qquad \begin{array}{ll} 2\sigma: & -0.10 < D < 0.10 \\ 1\sigma: & -0.07 < D < 0.07 \end{array}$$

Maximality of $\theta_{23} = \pi/4$

Vacuum ν_{μ} 2-flavor oscillation $P \propto \sin^2 2\theta_{23}$

Models with $|D| \sim 0.005$ to $0.16 \leftrightarrow \begin{cases} QLC \text{ (Minakata - Smirnov, 2003)} \\ (and sgn.D > \text{ or } < 0) \end{cases}$ Broken $\mu - \tau$ exchange symmetry (Mohapatra, 2004)

Octant ambiguity and sgn.D

$\nu_{\mu}, \bar{\nu}_{\mu}$ survival probability and spectral shape

Neutrino propagation in matter

$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} \sqrt{2}G_F N_e(x) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \frac{1}{2E} U_M \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} U_M^{\dagger}, \ U_M = U \left(\theta_{ij} \to \theta_{ij}^M, \ \delta \to \delta^M \right).$$

Survival probabilities

$$\begin{aligned} P_{\mu\mu}(L) &= 1 - 4 \left[|U_{\mu1}^{M}|^{2} |U_{\mu2}^{M}|^{2} \sin^{2} \frac{\lambda_{1} - \lambda_{2}}{4E} L + |U_{\mu2}^{M}|^{2} |U_{\mu3}^{M}|^{2} \sin^{2} \frac{\lambda_{2} - \lambda_{3}}{4E} L \right. \\ &+ |U_{\mu3}^{M}|^{2} |U_{\mu1}^{M}|^{2} \sin^{2} \frac{\lambda_{3} - \lambda_{1}}{4E} L \right] = P_{\mu\mu}^{\text{vac}}(L) + P_{\mu}^{M}(A, \Delta, \alpha) \\ \\ P_{\overline{\mu}\overline{\mu}}(L) &= P_{\mu\mu}(L, G_{F} \to -G_{F}) = P_{\mu\mu}^{\text{vac}}(L) - P_{\mu}^{M}(A, \Delta, \alpha). \\ \\ A &= \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}}, \\ \alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, \\ \Delta = \frac{\Delta m_{31}^{2}L}{4E}. \end{aligned}$$

SPMIN 1, SPMAX, SPMIN 2

Binned U/D and $(U/D)_N - (U/D)_A$ for atmospheric neutrinos Benchmark values for simulation

Δm_{31}^2	=	$2 imes 10^{-3} eV^2$
Δm_{21}^2	=	$8 imes 10^{-5} eV^2$
$\sin^2 \theta_{12}$	=	0.28
δ	=	0
δ $\sin^2 \theta_{23}$	=	0 0.36 and 0.5

Flux : HONDA et al. (2004) Energy and zenith angle resolution functions: gaussian with parameters from INO report

Binning in **Both** E and $\cos \xi$ is the key new feature and improvement on earlier work.

5 × 12 × 2 = 120 bins
↑ ↑ ↑
E
$$\xi \quad \nu, \overline{\nu}$$

Indumathi-Murthy (2004) Gandhi, Ghoshal, Goswami, Mehta (2005)

Normal ordering: matter effects decrease U_N/D_N at SPMAX making $\frac{U_N}{D_N} - \frac{U_A}{D_A}$ negative positive

Sensitivity to |D| and sgn. D

Error analysis

Stump et al. (2001) Strumia, Visani (2001) Fogli et al. (2002)

$$\chi_{atm}^2 \equiv \frac{min}{\xi_k} \left[\sum_{n=1}^{120} \left(\frac{\tilde{N}_n^{\text{th}} - N_n^{\text{data}}}{\sigma_{\text{stat}}} \right)^2 + \sum_{k=1}^k \xi_k^2 \right]$$

 N_n^{th} = expected # of events in bin n with 'true' parametric values

 N_n^{data} = expected # of events in bin n with parameters varying over allowed ranges

- σ_{stat} = stat. error in bin n
- ξ_k = kth "pull" i.e. systematic error
- $\tilde{N}_n^{\text{th}} = N_n^{\text{th}} \left[1 + \sum_{k=1}^k \prod_n^k \xi_k \right] + \mathcal{O}(\xi_k^2).$

|D| sensitivity comparable to 20 SK from water Cherenkov detector 18% vs. 23% at 3σ .

Octant ambiguity resolution better at ICAL for $\sin^2 \theta_{13} \ge 0.01$.

$\Delta \chi^2 \equiv \chi^2 \left[\sin^2 \theta_{23}(\text{true}), \text{others} \right] - \chi^2 \left[\sin^2 \theta_{12}(\text{false}), \text{others} \right] \text{vs } \sin^2 \theta_{23}(\text{true})$

 $sin^{2} \theta_{13}(true) = 0.01$ $sin^{2} \theta_{13}(true) = 0.02$ $sin^{2} \theta_{13}(true) = 0.03$ $sin^{2} \theta_{13}(true) = 0.04$

1 MTY at ICAL

0.5 MTY of data at ICAL

For normal hierarchy,

90% c.l. resolution of octant ambiguity possible from 0.5 MTY at ICAL

Summary

- Established feasibility of statistically significant measurement of $D \equiv 1/2 \sin^2 \theta_{23}$ from 1 MTY of INO data.
- Binning in both energy and zenith angle essential; effect largest at SPMAX.
- Range of |D| significantly sharpened over SK, comparable to capability of 20 SK.
- θ_{23} octant resolution sensitivity significantly better than megaton water Cherenkov detectors, provided $\theta_{13} > 5^{\circ}$.