THE WONDERFUL WORLD OF NEUTRINOS

Probir Roy TIFR, Mumbai

Kolkata Kolon Colloquium : SNBNCBS, December 1, 2004

"···· riddle wrapped in mystery inside an enigma" Winston Churchill

- INTRODUCTION
- SOLAR NEUTRINOS
- ATMOSPHERIC NEUTRINOS
- REACTOR NEUTRINOS
- COSMOLOGICAL NEUTRINOS
- NEUTRINO FACTFILE
- LONG BASELINE NEUTRINO STUDIES
- CONCLUDING REMARKS

INTRODUCTION

elementary fermions: quarks and leptons

$$\uparrow \text{neutrinos} \qquad \begin{array}{c} Q_S = 0 \\ \Rightarrow Q_{EM} = 0 \\ Q_W \neq 0 \end{array}$$

nucleus $\supset p, n$: mass \sim 1 GeV

$$c = 1 = \hbar$$

$$p = (uud), n = (udd)$$

$$\begin{pmatrix} u \\ d \end{pmatrix} = \text{up quark with charge } + \frac{2}{3}|e|, \qquad m_u \sim 3 \text{ MeV}$$
$$= \text{down quark with charge } -\frac{1}{3}|e|, \qquad m_d \sim 7 \text{ MeV}$$

Two more doublets

$$\begin{pmatrix} c \\ s \end{pmatrix} \qquad m_c \sim 1.2 \text{ GeV} \\ m_s \sim 120 \text{ MeV} \\ \begin{pmatrix} t \\ b \end{pmatrix} \qquad m_t \sim 180 \text{ GeV} \\ m_b \sim 4.3 \text{ MeV}$$

Three generations or flavours.

+ antiparticles \bar{f} for each f with the same mass.

Beta decay:

 $n \to p e^- \bar{\nu}_e$ $d(ud) \to u(ud) e^- \bar{\nu}_e$

$$\begin{aligned} (\bar{u}d) &: \pi^- \longrightarrow \nu^- \bar{\nu}_{\mu} \quad ; \quad \mu^- \longrightarrow e^- \bar{\nu}_e \nu_{\mu} \\ (u\bar{d}) &: \pi^+ \longrightarrow \mu^+ \nu_{\mu} \quad ; \quad \mu^+ \longrightarrow e^+ \nu_e \bar{\nu}_{\mu} \\ Z \longrightarrow \tau^+ \tau^- \quad ; \quad \tau^+ \longrightarrow \mu^+ (e^+) \nu_{\mu} (\nu_e) \bar{\nu}_{\tau} \\ \tau^- \longrightarrow \mu^- (e^-) \bar{\nu}_{\mu} (\bar{\nu}_e) \nu_{\tau} \end{aligned}$$

All sorts of neutrinos

Neutrino source	Description	Energy
Big Bang	Thermalized at 1.95 [°] K. Undetected yet.	\sim 10 $^{-4}$ eV
Stellar core	From nuclear reactions powering the star. Solar neutrinos detected.	\sim 0.1 to 0 (10) MeV
Supernova	Detected from SN1987A.	10–30 MeV
Atmospheric	In a cosmic ray air-shower. Detected first in 1965 in Kolar Gold Fields, India.	sub-GeV to multi-GeV
Radioactivity on earth	Flux $\sim 10^6~{\rm cm}^{-2}~{\rm sec}^{-1}$. Can be of geophysical use	${\cal O}$ (MeV)
Reactors	Antineutrinos from $n \rightarrow pe^- \bar{\nu}_e$ ICF in neutron-rich fissile nuclei.	\sim 4 MeV
Accelerators	Neutrino beams at CERN, BNL, Fermilab, JHF.	sub-GeV to GeV

There can be additional cosmic sources of UHE neutrinos: AGN, GRB.

ICECUBE etector at South pole: 1 km³ cubic lattice of phototubes. Neutrinos may be Dirac particles, i.e. $\nu \neq \overline{\nu}$ or Majorana particles $\nu = \overline{\nu}$.

Neutrino scattering from matter electrons :

 $\sigma \sim 10^{-44}$ cms for an MeV energy ν_e .

 $\lambda = 1/(N_e \sigma) \sim \pi/(2N_e G_F^2 m_e E_\nu)$

Mfp of such ν in lead = 1 light year. Yet neutrino flavour conversion can be significantly enhanced in 1000 kms. of earth matter.

- In the Standard Model neutrinos are massless and only $\nu_L^{e,\mu,\tau} = \frac{1}{2}(1-\gamma_5)\nu^{e,\mu,\tau}$ exist
- Almost all extensions of the Standard Model predict nonzero neutrino masses

Dirac ν has four components $\nu_L, \nu_L{}^C, N_R, N_R{}^C$.

$$\nu = \nu_L + N_R.$$

Dirac mass term $m_D \bar{\nu} \nu = m_D (\bar{\nu}_L N_R + \bar{N}_R \nu_L)$

Question: Why is $m_
u \ll m_f \quad \forall f$.

See-saw Mechanism

$$\begin{array}{ccc}
\nu_L & \bar{N}_R \\
\nu_L & \begin{bmatrix} 0 & m_D \\
m_D & M_N \end{bmatrix} \rightarrow \begin{pmatrix} \sim \frac{m_D^2}{M_N} & 0 \\
0 & \sim M_N \end{pmatrix}$$

 $M_N \gg m_D = \mathcal{O}(m_f) ~~\uparrow$ large Majorana mass for N_R

Now $m_{\nu} \sim m_D^2/M_N \ll m_D$.

Other proposed mechanisms for the smallness of $m_{\nu} \sim \frac{m_f}{(V_{\delta})^{1/2}}$ in terms of extra compactified dimensions. Neutrino Oscillations

 ν weak eigenstates may be different from ν mass eigenstates.

2 flavours situation, mixing angle θ :

$$\nu_e = \nu_1 \cos \theta + \nu_2 \sin \theta$$
$$\nu_f = -\nu_1 \sin \theta + \nu_2 \cos \theta$$

Weak decay produces distinct weak eigenstate $u(0) = \nu_e$, say

$$\nu(t) = \nu_1 e^{-iE_1 t} \cos \theta + \nu_2 e^{-iE_2 t} \sin \theta$$

Ultrarelativistically, $p \sim E - \frac{m^2}{2E}$.

$$P[\nu_e \to \nu_f; L] = \sin^2 2\theta \sin^2 \frac{E_2 - E_1}{2} t.$$

$$P[\nu_e \to \nu_f; L] \simeq \sin^2 2\theta \sin^2 \frac{\delta m_{21}^2 L}{4E}$$

 $\simeq \sin^2 2\theta \sin^2 \frac{1.27(\delta m_{21}/eV)^2(L/km)}{E/GeV}$

SOLAR NEUTRINOS

ν_e 's with sub-MeV to a few MeV energies from the solar core

Reaction	Max. flux in $m^{-2}s^{-1}$ from SSM	$E_{ u}$
$pp \to de^+ \nu_e$	$\sim 6 \times 10^{14}$	0 to 0.420 MeV
$pep \rightarrow d\nu_e$	$\sim 1.5\times 10^{12}$	1.8 MeV
$^7B_ee \rightarrow \ ^7Li\nu_e$	$\sim 4.75 \times 10^{13}$	0.38 MeV & 0.87 MeV
$^{8}B \rightarrow \ ^{8}B_{e}^{*}e^{+}\nu_{e}$	$\sim 5\times 10^{10}$	0 to 14.6 MeV
$^{13}N \rightarrow {}^{12}Ce^+\nu_e$	$\sim 5.5\times 10^{12}$	0 to 1.25 MeV
$^{15}O \rightarrow \ ^{15}Nle^+\nu_e$	$\sim 4.8 \times 10^{12}$	0 to 1.75 MeV
$^{17}F \rightarrow \ ^{17}Oe^+\nu_e$	$\sim 5.5 imes 10^{10}$	0 to 1.75 MeV

Main nuclear reactions

Detection (deep underground)

(1) Radiochemical

HOMESTAKE $\nu_e \, {}^{37}Cl \rightarrow e \, {}^{37}A$ DAVIS \downarrow Nobel 2002 Atoms counted

using Auger effect.

(2) Realtime scattering in water $\nu_e \rightarrow \nu_e e$. KOSHIBA Works less efficiently for ν_{μ} and $\nu_{\tau} \colon \nu_{\mu,\tau} e \to \nu_{\mu,\tau} e$

Nobel 2002

Directionality (to Sun) via Cerenkov cones.

(3) Realtime scattering in heavy water D_2O (SNO)

 $\nu_e d \to epp$ $\nu_x d \to \nu_x pn$ $x = e, \mu, \tau$

Reduced ν_e fluxes detected as compared to SSM expectations.

Explanation: flavour conversion $\nu_e \rightarrow \nu_{\mu,\tau}$.

$$SNO = \frac{\text{observed }\nu_e \text{ flux}}{\text{observed }\nu_x \text{ flux}} = \frac{(\nu_e - \text{flux})_{\text{Earth}}}{(\nu_e - \text{flux})_{\text{Sun}}}$$
$$P_{ee} = 1 - \sin^2 2\theta_{\odot} \sin^2 \frac{1.27(\delta m_{21}^2/ev^2)(L/km)}{E/GeV}$$

+ Resonant enhancement of flavour conversion in solar medium MSW

 $\implies \delta m^2_{21} = (6.8 \pm 0.8) \times 10^{-5} eV^2, \ \theta_S = 32.5^\circ \pm 2.5^\circ.$

ATMOSPHERIC NEUTRINOS

Roughly, expected $\frac{N(\nu_{\mu})}{N(\nu_{e})} \simeq 2$. Seen: almost equal nos.

sub-GeV:
$$\frac{(N_{\mu}/N_{e})_{data}}{(N_{\mu}/N_{e})_{expected}} = 0.652 \pm 0.019 \pm 0.051$$

multi-GeV μ -like: $\frac{N_{\mu}^{up} - N_{\mu}^{down}}{N_{\mu}^{up} + N_{\mu}^{down}} = -0.296 \pm 0.032 \pm 0.01$

Best interpretation: $u_{\mu} \leftrightarrow
u_{ au}$ oscillation

$$|\delta m_{32}^2| = (2.6 \pm 0.4) \times 10^{-3} eV^2$$

 $\theta_A = 45^\circ \pm 5^\circ.$

Indian initiative: India-based Neutrino Observatory (INO) Underground calorimetric detector: magnetized iron layers with RPC's.

REACTOR NEUTRINOS

KamLAND expt:

 $\bar{\nu}_e$ beams from 50 reactors between 150 and 350 kms into 1 kton liquid scintillator detector at Kamioka. Detection via $\bar{\nu}_e + p \rightarrow e^+ + n$. Measured flux vs. input calculated flux clearly supports δm^2_{21} and θ_{\odot} values.

CHOOZ expt: $\bar{\nu}_e$'s from two cores in a French nuclear power plant. No depletion found at $L \sim 1km \Longrightarrow |\theta_{13}| < 13^{\circ}$. Double-CHOOZ expt. being undertaken with one more "near" detector at $L \sim 100 - 200 \text{ m}$ from the cores. Hopes to improve limit on θ_{13} by factor **3**. New KASKA (Kashiwazaki-Kariwa complex) expt in Japan, Krasnoyarsk in Russia and Daya Bay in China.

COSMOLOGICAL NEUTRINOS

Generated from the Big Bang

$$N(p) = \frac{1}{e\frac{p}{kT_c} + 1}$$

Decoupled about 1 min after BB. HDM today About 330 (ν , $\bar{\nu}$)'s/cm³.

$$\Omega = \rho/\rho_c$$

$$\Omega_{\nu,\bar{\nu}}h^2 = \frac{\sum_{\nu}m_{\nu}}{91.5eV},$$

$$H_0 = 100 h \,\mathrm{km}\,\mathrm{sec}^{-1}mpc^{-1} \,\mathrm{and}\,h \sim 0.7$$

WMAP probe into different components of Ω has bounded Ω_{HDM} from above

$$\implies \qquad \sum_{\nu} m_{\nu} < 0.71 \ eV.$$

NEUTRINO FACTFILE

 $|\theta_{13}| < 13^{\circ}$

Two possible types of ordering

$$\delta m_{ij}^2 = m_i^2 - m_j^2.$$

LONG BASELINE NEUTRINO STUDIES

- K2K
- *T2K*
- MINOS
- CNGS
- MINERVA
- NOVA

Accelerator neutrino ($\nu_{\mu}, \bar{\nu}_{\mu}$ or β -beams $\nu_{e}, \bar{\nu}_{e}$) beam + near detector + far detector

Project	Accelerator	Location of far detector	Dist. kms.	$<\!E_{ u}>$ GeV	Status
K2K	KEK p synchrotron	Kamioka mines	250	1.4	Started April '99
Minos	Fermilab Main injector	Soudan mine	730	3±1	To start in 2005
CNGS	CERN <mark>450</mark> GeV SPS	Gransasso Lab	732	a few <mark>GeV</mark>	– do –
T2K	<i>p</i> accelerator JHF, Tokai	Kamloka mines	295	\leq 1 GeV	?
Minerva Nova	Fermilab main injector Superberm ?	Soudan 15 km off-axis surface	732+	1 \simeq 2 GeV	?

superbeams neutrino factories

Our result

B. Brahmachari, S. Choubey & PR: Nucl. Phys. **B671** (2003) 483. S. Choubey & PR: Phys. Rev. Lett. **93** (2004) 021803. $|
u_{\alpha}\rangle$ = neutrino flavour states ($\alpha = e, \mu, \tau$) participating in EW gauge interactions.

 $|\nu_i\rangle$ = neutrino mass eigenstates with masses $m_i(i, 1, 2, 3)$ $|\nu_\alpha\rangle = U_{\alpha i} |\nu_i\rangle$

unitary transformation

 \uparrow

$$U \equiv U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$\begin{array}{l} |\nu_1\rangle \to |\nu_e\rangle \\ |\nu_2\rangle \to |\nu_\mu\rangle \\ |\nu_3\rangle \to |\nu_\tau\rangle \end{array}$$
 when $U \to I$: PMNS convention

Propagation in vacuum

$$\begin{split} |\nu_i\rangle_L &= e^{ip_iL}|\nu_i\rangle_0\\ |\nu_\alpha\rangle_L &= U_{\alpha i}|\nu_i\rangle_L = U_{\alpha i}U_{\beta i}^*e^{ip_iL}|\nu_\beta\rangle_0\\ S_{\alpha\to\beta}(L) &= <\nu_\beta|\nu_\alpha>_0 = U_{\alpha i}U_{\beta i}^*e^{ip_iL}.\\ P[\nu_\alpha(0)\to\nu_\beta(L)] &= |S_{\alpha\to\beta}(L)|^2.\\ \end{split}$$
 \end{split} Ultrarelativistically, $p\sim E-\frac{m^2}{2E}.$ Define $\Delta_{ij}\equiv\frac{m_i^2-m_j^2}{4E}L.$ In the approximation $|\delta m_{32}|^2 \gg |\delta m_{21}^2|$ one can show that $P[\nu_\mu(0)\to\nu_\mu(L)]_{vac}\simeq 1-4|U_{\mu3}|^2(1-|U_{\mu3}|^2)\sin^2\Delta_{31}\\ &= P[\bar{\nu}_\mu(0)\to\bar{\nu}_\mu(L)]_{vac}$

 u_{μ} survival probability in vacuum, minimum for $|U_{\mu3}| = 1/\sqrt{2}$. u_{μ} flavour conversion probability maximal for $|U_{\mu3}| = 1/\sqrt{2}$. $|U_{\mu3}|$ known to be $\sim 1/\sqrt{2}$.

 $\left|\frac{1}{\sqrt{2}} - |U_{\mu 3}|\right|$ is the deviation from maximality difficult to measure at a minimum.

But, through matter (earth mantle) of roughly uniform density, we have a result

$$\begin{split} \Delta P_{\mu\mu} &= P[\nu_{\mu}(0) \to \nu_{\mu}(L)] - P[\bar{\nu}_{\mu}(0) \to \bar{\nu}_{\mu}(L)] \\ &= 4|U_{e3}|^2|U_{\mu3}|^2(1-2|U_{\mu3}|^2)A[2L\Delta_{31}^{-1}\sin^2\Delta_{31} \\ &- L\sin(2\Delta_{31})] + O(A^3), \end{split}$$

where $A = \sqrt{2}G_F N_e$ Earth electron density

A measurment of this will directly yield the deviation of muon neutrino mixing from maximality. Feasible in the Fermilab–Soudan setup.

CONCLUDING REMARKS

A glimpse of the world of neutrinos. Only indication of new physics beyond the Standard Model.

Not covered

- Geothermal neutrinos
- Neutrino astronomy
- CP violation in neutrino sector