July 30, 2004

LINEAR COLLIDER SIGNALS OF ANOMALY MEDIATED SUPERSYMMETRY BREAKING

Probir Roy

Tata Institute of Fundamental Research

ALCPG meeting, Victoria

- Introduction to AMSB
- Sparticle Spectra of AMSB
- LC Processes and Signals

$$e^{+}e^{-} \rightarrow \gamma \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$$

$$e^{+}e^{-} \rightarrow \tilde{e}^{+}\tilde{e}^{-}, \ \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0}, \ \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}$$

$$e\gamma \rightarrow \tilde{\nu} \tilde{\chi}_{1}^{-}$$

$$\gamma\gamma \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \gamma$$

INTRODUCTION TO AMSB

MSSM left-chiral superfields $(\Phi \sim \varphi + \theta \Psi + \theta \theta F)$

$$Q_{i} = {\binom{U_{i}}{D_{i}}}, L_{i} = {\binom{N_{i}}{E_{i}}}, H_{u} = {\binom{H_{u}^{+}}{H_{u}^{0}}}, H_{d} = {\binom{H_{d}^{0}}{H_{d}^{-}}}: SU(2)_{L} \text{ doublets, } \tan \beta = \frac{\langle H_{u}^{0} \rangle}{\langle H_{d}^{0} \rangle}.$$
$$\overline{U_{i}}, \overline{D_{i}}, \overline{E_{i}} \qquad SU(2)_{L} \text{ singlets}$$

Superpotential

$$\mathcal{W} = h_{ij}^u \ Q_i \cdot H_u U_j + h_{ij}^d \ Q_i \cdot H_d \overline{D_j} + h_{ij}^e \ L_i \cdot H_d \overline{E_j} + \mu H_u \cdot H_d$$

Spontaneous SUSY breaking with just these fields ruled out by Dimopoulos-Georgi sumrule $(m_{\tilde{u}_L}^2 + m_{\tilde{u}_R}^2 - 2m_u^2) + (m_{\tilde{d}_L}^2 + m_{\tilde{d}_R}^2 - 2m_d^2) = 0$

:: SUSY breaking through explicit soft (mass dimension < 4) terms.

 \rightarrow MSSM.

105 new parameters in MSSM.

- squark masses
- slepton masses
- gaugino masses
- A- and B-terms

Effective theory from spontaneous supersymmetry breakdown in a gauge singlet world : **HIDDEN SECTOR**

Drastic reduction of parameters in MSSM depending on the mediators: gravity or messenger gauge fields ?

A specially interesting scenario is Anomaly Mediation AMSB: a particular case of gravity mediation, with no tree level supergravity couplings between the two sectors. Best realised in higher dimensional theories.

• Tree level supergravity couplings between the two sectors avoided if the branes are well separated by $\sim 10^{16}$ GeV⁻¹, say.

 quantum loop-induced superconformal anomaly can cause the transmission of supersymmetry breaking from the hidden to the observable sector.

Soft operators $\sim \frac{1}{16\pi^2} \frac{\langle F \rangle}{M_{P\ell}}$ should pertain to EW scale.

Loop factor makes $\langle F \rangle \gg M_W M_{P\ell}$ and $m_{3/2} \sim 10$ to 100 TeV.

SPARTICLE SPECTRA OF AMSB

Gaugino masses $M_{\alpha} = \frac{\beta(g_{\alpha})}{g_{\alpha}}M$ $(M_1: M_2: M_3)_{EW} \simeq 2.8: 1: 7.1$ vs. $\simeq 1: 2: 7$

> mSUGRA mGMSB

Sfermion masses
$$\tilde{m}_i^2 = m_0^2 - \frac{1}{4} \left[\beta(g_\alpha) \frac{\partial \gamma_i}{\partial g_\alpha} + \beta_Y \frac{\partial \gamma_i}{\partial g_Y} \right] m_{3/2}^2$$

 $m_0^2 =$ bulk-generated, avoids tachyonic sleptons

Randall, Sundrum Giudice, Wells Feng, Moroi

Nonminimal versions with extra (exotic) U(1), vector multiplets, gaugino-assisted AMSB ...

Pomerol, Rattazzi Kaplan, Kribs Chacko, Luty, Maksymik, Ponton Nelson, Weiner Allanach, Diedes

Two types of mAMSB mass spectra : A and B, including B1

Features of **AMSB** spectra

- Lightest neutralino/charginos almost winolike : $ilde{\chi}_1^\pm \sim \widetilde{W}^\pm, ilde{\chi}_1^0 \sim \widetilde{W}^0$
- Near mass degeneracy of $\tilde{\chi}_1^0, \tilde{\chi}_1^\pm$ (robust)
- Closeness in mass of $\tilde{e}_{L,R}$ (mAMSB)

 $ilde{\chi}_1^{\pm}
ightarrow ilde{\chi}_1^0 + (1,2)$ soft pion(s)

$\tilde{\chi}_1^0 \longrightarrow$ heavy ionizing track X_D , observable vertex displacement? Characteristic impact parameter distribution of soft pion(s)?

Gunion, Mrenna

Cheng, Dobrescu, Matchev

LEP bounds relevant to AMSB : $m_{\tilde{\chi}_1^\pm} > 86$ GeV. A. Heister et al. ALEPH $m_{\tilde{\tau}_1} > 82$ GeV. M. Elsing, DELPHI

Additional constraints: $(g-2)_{\mu}$ and $\Gamma(B_s \to X_s \gamma)$ rule out regions in $m_0, m_{3/2}$ plane, disfavor low tan β AMSB. tan $\beta > 30$ fine.

Feng, Moroi Feng, Matchev Chattopadhyay, Nath Baer, Balaz, Fernandis, Tata Enqvist, Gabrielli, Huitu.

LC PROCESSES AND SIGNALS

Won't discuss hadronic collider signals of AMSB.

Review Ambrosanio et al. hep-ph/0006162 Mele, hep-ph/0407204

$$e^+e^- \to \gamma \tilde{\chi}_1^+ \tilde{\chi}_1^-$$

Trigger: hard photon $+\not\!\!\!E_T + X_D/\pi$ ($\pi \equiv$ one or more soft pions). Studied in mSUGRA for $|M_2| \gg |\mu|$ (higgsinolike $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}$).

Chen, Drees, Gunion

Detailed analysis in mAMSB

Datta, Maity

At $\sqrt{s} = 500$ GeV with $\mathcal{L} = 50 f b^{-1}$, with suitably chosen cuts to reduce bkgd, hundreds of events expected for 100 GeV $< M_{\tilde{\chi}_1^+} < 200$ GeV.

• Track length X_D and impact parameter b of π can be used to enhance S/B.

• Determination of $m_{\tilde{\chi}_1^{\pm}}$ from kinematics and $m_{\tilde{\nu}}$ from production X-section may help distinguish mAMSB from models with $|M_2| \gg |\mu|$ and large $m_{\tilde{\nu}}$.

 $m_{Z^*} \equiv \frac{1}{2}(P_{e^+} + P_{e^-} - P_r)^{1/2} > m_{\tilde{\chi}_1^{\pm}}$ for the signal and helps determine $m_{\tilde{\chi}_1^{\pm}}$.

$e^+e^- \to \tilde{e}_L^{\pm} \tilde{e}_L^{\mp}, \tilde{e}_R^{\mp} \tilde{e}_R^{\pm}, \tilde{e}_L^{\pm} \tilde{e}_R^{\mp}, \tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_2^0 \tilde{\chi}_2^0$

Decay Patterns $\ell = e, \mu; \pi = X_D$ and/or soft charged pions

	Spectrum A	Spectrum B		
	$ ilde{\chi}^0_2 o ilde{ u} ar{ u}, ar{ar{ u}} u, ilde{\ell}_L^\pm \ell_L^\mp, ilde{\ell}_R^\pm \ell_R^\mp$	$ ilde{e}_L o e ilde{\chi}^0_1, e ilde{\chi}^0_2, u_e ilde{\chi}^{ch}_1$		
Primary	${ ilde e}_L o e { ilde \chi}_1^{0}, u_e { ilde \chi}_1^{ch}$	${}^{@}{ ilde{e}_{R}} ightarrow e ilde{\chi}_{2}^{0}$		
decays	${}^{\#} ilde{e}_R o e ilde{\chi}_2^{0*} o e ar{ u} ilde{ u}, e au ilde{ au}_1 \qquad \qquad ilde{ u} o u ilde{\chi}_1^0, u ilde{\chi}_2^0, \ell^{\pm} ilde{\chi}_1^{\pm}$			
	$ ilde{ u} o \ell^{\mp} ilde{\chi}_1^{\pm}, u ilde{\chi}_1^0$	$ ilde{\chi}^0_2 o ilde{\chi}^0_1 h, ilde{\chi}^0_1 Z, ilde{\chi}^\pm_1 W^\mp$		
		$ ightarrow au ilde{ au}_1$ (Spectrum B1)		
	$ ilde{\chi}^0_2 o \ell^\pm \pi^\mp E_T, \ell^+ \ell^- E_T, \ell^+_1 \ell^2 \ell^\pm_2 \pi^\mp E_T$	$ ilde{e}_L o e ot\!$		
End	$ ilde{e}_L o e ot\!$	$ ilde{e}_R o e ot\!$		
products	$\widetilde{e}_R o e ot\!$	$ ilde{ u} ightarrow \ell^{\pm} \pi^{\mp} ot\!$		
	$ ilde{ u} ightarrow \ell^{\pm} \pi^{\mp} ot\!$	$ ilde{\chi}^0_2 o e^\pm \pi^\mp ot\!$		
		$\rightarrow \ell^+ \ell^- onumber L_T, au^+ au^- onumber L_T$		

 ${}^{\#}\tilde{e}_{R} \not\rightarrow e\tilde{\chi}_{1}^{0}$, since $\tilde{\chi}_{1}^{0}$ has no bino component. $\tilde{e}_{R} \not\rightarrow e\tilde{\ell}_{L}^{\mp}\tilde{\ell}_{L}^{\pm}$ since $m_{\tilde{\ell}_{L}} > m_{\tilde{e}_{R}}$. † from $\tilde{\chi}_{1}^{0}\nu\bar{\nu}$

[®]Prompter in Spectrum B than in Spectrum A

Spectrum	Signals	Parent Channels			
	$e \pi$	$ ilde{ u}ar{ ilde{ u}}, \hspace{0.2cm} ilde{e}_L^+ ilde{e}_L^-, \hspace{0.2cm} ilde{e}_L^\pm ilde{e}_R^\mp, \hspace{0.2cm} ilde{\chi}_1^0 ilde{\chi}_2^0, \hspace{0.2cm} ilde{\chi}_2^0 ilde{\chi}_2^0$			
	$\mu\pi$	$ ilde{ u}ar{ ilde{ u}}, \hspace{0.2cm} ilde{\chi}_1^0 ilde{\chi}_2^0, \hspace{0.2cm} ilde{\chi}_2^0 ilde{\chi}_2^0$			
Α	$e^+ e^- \ell \pi$	$ ilde{e}^+_R ilde{e}^R, \hspace{0.2cm} ilde{e}^\pm_L ilde{e}^\mp_R, \hspace{0.2cm} ilde{\chi}^0_1 ilde{\chi}^0_2, \hspace{0.2cm} ilde{\chi}^0_2 ilde{\chi}^0_2$			
	μ^+ $\mu^ \ell$ π	$ ilde{\chi}_1^0 ilde{\chi}_2^0, \hspace{0.2cm} ilde{\chi}_2^0 ilde{\chi}_2^0$			
	ℓ_1 ℓ_1 ℓ_2 ℓ_2 ℓ_3 π	$ ilde{\chi}_2^0 ilde{\chi}_2^0$ ($\ell_{1,2,3}=e,\mu$)			
	$e \pi$	$ ilde{ u}ar{ ilde{ u}}, \hspace{0.2cm} ilde{e}_L^+ ilde{e}_L^-, \hspace{0.2cm} ilde{e}_L^\pm ilde{e}_R^\mp, \hspace{0.2cm} ilde{\chi}_1^0 ilde{\chi}_2^0, \hspace{0.2cm} ilde{\chi}_2^0 ilde{\chi}_2^0$			
	$\mu\pi$	$ ilde{ u}ar{ ilde{ u}}, \hspace{0.2cm} ilde{e}_{L}^{+} ilde{e}_{L}^{-}, \hspace{0.2cm} ilde{\chi}_{1}^{0} ilde{\chi}_{2}^{0}, \hspace{0.2cm} ilde{\chi}_{2}^{0} ilde{\chi}_{2}^{0}$			
В	$e \; \ell_1^\pm \; \ell_2^\mp \; \pi$	$ ilde{e}_R^+ ilde{e}_R^-, ilde{e}_L^\pm ilde{e}_R^\mp, ilde{e}_L^+ ilde{e}_L^-, ilde{ u}ar{ar{ u}}, ilde{ar{ u}}ar{ar{ u}}_2^0 ilde{\chi}_2^0$			
		$(\ell_{1,2}=e,\mu)$			
	$\mu~\mu^+~\mu^-~\pi$	${ ilde \chi}^0_2 { ilde \chi}^0_2, ~~~ { ilde u} {ar { ilde u}}$			
	$e^+ e^- \ell_1^+ \ell_1^- \ell_2 \pi$	$ ilde{e}_L^+ ilde{e}_L^-, ilde{e}_R^+ ilde{e}_R^-, ilde{e}_L^\pm ilde{e}_R^\mp \ (\ell_{1,2} = e, \mu)$			

- Same signals possible in Specta A and B, though parent sources may be different.
- $3\ell\pi$, i.e. trilepton $+X_D$ and/or soft pion(s) especially interesting. For Spectrum B (not for Spectrum A), $\ell^+\ell^-$ must have mass peak at M_Z . Discriminant between the two spectra.

Detailed study of Spectrum A

Spectrum A

Signal	PS	Cross Sections (fb)						
		$\tilde{\nu}\bar{\tilde{ u}}$	$ ilde{e}_L ar{ar{e}}_L$	$ ilde{e}_R ar{ar{e}}_R$	$ ilde{e}_L ar{ ilde{e}}_R + ilde{e}_R ar{ ilde{e}}_L$	$ ilde{\chi}^0_1 ilde{\chi}^0_2$	$ ilde{\chi}^0_2 ilde{\chi}^0_2$	Total
$e\pi + E_T$	a	40.27	46.7	_	0.00029	2.46	0.118	89.54
	b	40.94	45.09	_	0.000121	2.48	0.14	88.65
	c	43.03	44.44	_	$2.55 imes10^{-5}$	2.14	0.13	89.74
	d	30.17	31.63	_	$3.24 imes10^{-8}$	1.74	0.032	63.57
	e	26.4	24.33	_	0.0	1.35	0.011	52.09
	f	17.28	13.43	_	0.0	0.99	0.003	31.70
$ee\mu\pi + E_T$	a	-	-	$1.36 imes10^{-4}$	0.010	1.44	0.159	1.61
	b	-	-	$3.65 imes10^{-4}$	0.012	1.32	0.174	1.50
	c	-	-	0.00	0.018	1.19	0.116	1.32
	d	-	-	0.00	$2.3 imes10^{-5}$	0.014	0.033	0.047
	e	-	-	0.00	$4.15 imes10^{-5}$	0.011	0.008	0.019
	f	-	-	0.00	$2.02 imes10^{-5}$	0.006	0.001	0.007
$ee\pi\pi + E_T$	a	24.21	-	_	0.014	-	0.0511	24.27
	b	24.94	-	_	0.016	-	0.0648	25.02
	c	27.66	-	_	0.026	-	0.0604	27.74
	d	16.45	-	-	$2.7 imes10^{-5}$	-	0.0119	16.46
	e	14.62	-	-	$5.04 imes10^{-5}$	-	0.0044	14.62
	f	8.66	-	_	$2.41 imes 10^{-5}$	-	0.000972	8.66

 $e\gamma$ Collision

 $e^-\gamma \to \tilde{\nu}\tilde{\chi}_1^-, \quad \tilde{\nu} \to e^-\tilde{\chi}_1^+ \to e^-\pi^+\tilde{\chi}_1^0, \quad \tilde{\chi}_1^- \to \pi^-\tilde{\chi}_1^0$

Choudhury, Ghosh, Roy

 $m_{3/2}$ vs.m₀ plot, 20 TeV < $m_{3/2}$ < 70 TeV, 0.25 TeV < m_0 < 0.4 TeV, $P_e = -0.8$, $P_L = +1$.

X ruled out by LEP limit on chargino mass, Y by the requirement of $\tilde{\chi}_1^0$ being the LSP. The top three shaded regions correspond to X-section in the ranges (0.1–5) fb, (5–50) fb and (50–150) fb while the lowermost region to (150–470) fb in (a) and (150–390) fb in (b).

Can determine $m_{\tilde{\nu}}, m_{\tilde{\chi}_1^{\pm}}$ from electron energy spectrum endpoints.

$$\frac{m_{\tilde{\nu}}^2 - m_{\tilde{\chi}_1^\pm}^2}{2(E_{\tilde{\nu}}^{\max} + k_{\tilde{\nu}}^{\max})} \leq E^e \leq \frac{m_{\tilde{\nu}}^2 - m_{\tilde{\chi}_1^\pm}^2}{2(E_{\tilde{\nu}}^{\max} - k_{\tilde{\nu}}^{\max})},$$

$$E_{\tilde{\nu}}^{\max} = \frac{1}{4y_{\max}\sqrt{s}} \left[(1 + y_{\max})(y_{\max}s + m_{\tilde{\nu}}^2 - m_{\tilde{\chi}_1^\pm}^2) + (1 - y_{\max})\sqrt{(y_{\max}s + m_{\tilde{\nu}}^2 - m_{\tilde{\chi}_1^\pm}^2)^2 - 4y_{\max}sm_{\tilde{\nu}}^2} \right]$$

$$k_{\tilde{\nu}}^{\max} = \sqrt{E_{\nu}^{\max 2} - m_{\tilde{\nu}}^2} \text{ and } y_{\max} = \text{maximum value of the fraction of } e^{\pm}$$
energy carried off by the reflected photon beam

Sensitive upto $m_{\tilde{\chi}_1^{\pm}} \sim 200$ GeV and $m_{\tilde{\nu}}$ upto 400 GeV for $\sqrt{s} = 500$ GeV and $\int dt \mathcal{L} = 50$ fb⁻¹.

$\gamma\gamma$ collision

 $\gamma\gamma o \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma, \ \tilde{\chi}_1^\pm o \tilde{\chi}_1^0 \pi^\pm$

Choudhury, Mukhopadhyaya, Rakshit, Datta

Chargino mass measurable from this process.

Signal cross section vs. e^+e^- CM energy, with $p_T^{\gamma} > 10$ GeV.

 $\int dt \mathcal{L} = 100 \text{ fb}^{-1}$ at $\sqrt{s} = 500 \text{ GeV}$ sensitive upto $m_{\tilde{\chi}_1^{\pm}} \sim 165-170 \text{ GeV}$. Mass reach roughly doubled at $\sqrt{s} = 1 \text{ TeV}$.

Acknowledgement

I have benefitted enormously from discussions with my collaborators Dilip Ghosh, Anirban Kundu and Sourov Roy.